11800 South Zone C Reservoirs

Geotechnical Engineering Report

November 8, 2023 | Terracon Project No. 61225118

Prepared for:

Jacobs Engineering Group 6440 S Millrock Drive, Ste 300 Salt Lake City, Utah 84121

Nationwide Terracon.com

Facilities
 Environmental
 Geotechnical
 Materials

6949 S. High Tech Drive, #100 Midvale, Utah 84047 P (801) 545-8500 **Terracon.com**

November 8, 2023

Jacobs Engineering Group 6440 S Millrock Drive, Ste 300 Salt Lake City, Utah 84121

Attn: Ryan Willeitner, P.E. P: (385) 474-8564 E: Ryan.Willeitner@jacobs.com

Re: Geotechnical Engineering Report 11800 South Zone C Reservoirs 7185 West 11800 South South Jordan, Utah Terracon Project No. 61225118

Dear Mr. Willeitner:

We have completed the scope of Geotechnical Engineering services for the abovereferenced project in general accordance with Terracon Proposal No. 61227189 dated June 27, 2022, and updated in December 2022. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and below-grade water tank structures for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon

John B. Mancini, P.E Senior National Account Manager

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Table of Contents

Introduction1
Project Description1
Site Conditions
Geotechnical Characterization4
Geologic Hazards5
Seismic Site Class
Liquefaction
Corrosivity7
Geotechnical Overview
Earthwork
Site Preparation
Subgrade Preparation
Existing Fill10
Excavation10
Soil Stabilization
Fill Material Types11
Fill Placement and Compaction Requirements12
Utility Trench Backfill13
Grading and Drainage14
Earthwork Construction Considerations14
Construction Observation and Testing15
Shallow Foundations
Design Parameters — Compressive Loads15
Foundation Construction Considerations16
Tank Bottom Slab
On-Grade Slab Design Parameters18
Slab Construction Considerations18
Lateral Earth Pressures
Design Parameters
Subsurface Drainage for Below-Grade Walls20
General Comments 21

Figures

GeoModel

Attachments

Exploration and Testing Procedures Site Location and Exploration Plans

i

Exploration and Laboratory Results Supporting Information

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks that direct the reader to that section and clicking on the **precent** logo will bring you back to this page. For more interactive features, please view your project online at **client.terracon.com**.

Refer to each individual Attachment for a listing of contents.

Introduction

This report presents the results of our subsurface exploration and Geotechnical Engineering services performed for the proposed water tanks to be located at 7185 West 11800 South in South Jordan, Utah. The purpose of these services was to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- groundwater conditions
- Seismic Site Class
- site preparation and earthwork
- foundation design and construction
- tank slab design and construction
- lateral earth pressure
- corrosivity
- Site Location and Exploration Plans

The geotechnical engineering Scope of Services for this project included the advancement of test borings, laboratory testing, engineering analysis, and preparation of this report.

Drawings showing the site and boring locations are shown in the **Site Location** and **Exploration Plan**, respectively. The results of the laboratory testing performed on soil samples obtained from the site during our field exploration are included in the boring logs in the **Exploration Results** section.

Project Description

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Item	Description
	The Jordan Valley Water Conservancy District (JVWCD) issued a " <i>Request for Statement of Qualifications to Provide Professional Engineering Services for 11800 South Zone C Reservoir"</i> dated April 2022, and Terracon provided an original proposal for the proposed project dated May 10, 2022.
Information Provided	Jacobs Engineering Group (Jacobs) has done some preliminary design on the project, and the project was preliminarily designed since its initial proposal. Jacobs requested that Terracon provide an updated scope of services and cost estimate to provide geotechnical support services for the updated Project Design.
	A subsequent email dated December 9, 2022, provided the updated design of a two-tank system and approximate locations. Preliminary design information was provided by emails dated March 30 and 31, 2023.
Project Description	Design of two new buried water tanks each at 5 million gallons (MG) capacity including chlorine building, vaults and pipe up to 48 inches in diameter. The eastern tank will be built first, with the western tank to be built later.
Proposed Structures	Each tank is specifically a wire wrapped, circular prestressed concrete tank, approximately 170 feet in diameter with a maximum of 31.5 feet in water height, operating at 30.5 feet in water height, and with each tank having the top exposed to the atmosphere. The sidewalls will be buried and/or backfill supported to the top. The chlorine building is planned to be a CMU building at grade next to the valve vault which is 18 feet by 18 feet buried 14 feet. The pipes will be up to 48 inches in diameter connecting the tanks and vault to existing systems.
Finished Tank Floor Elevation	Tank floor level (TFL) elevation is anticipated to be 5,127.5 feet mean sea level, with the maximum tank operating water level (HWL) elevation at 5,158 feet, the top of overflow at 5,159 feet, and the top of tank ceiling at approximately 5,163 feet.
Maximum Loads	Wall loads estimated at approximately 10 kips per foot with a water load on each slab of approximately 2 kips per square foot. Distance between columns of approximately 20 feet.
Grading/Slopes	Based on TFL elevation of 5,127.5 feet, grading cuts ranging on the order of 20 to 30 feet below existing grades will be needed to excavate the tank areas. Finished grades along the top of the tanks are estimated to be 5,162 feet, sloping down to existing ground elevations.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Item	Description			
Below-Grade Structures	Preliminary layouts show that the two tanks will be buried structures.			
Pavements	None			
Design Standard	Improvements shall be designed to withstand forces anticipated during a seismic event. Determine hazard curves using a 2 percent probability of exceedance in 50 years and the latest ground motion maps prepared by the U.S. Geological Survey. Design per ACI 350.3-06 for facilities considered to be an essential part of a lifeline system.			

Terracon should be notified if any of the above information is inconsistent with the planned construction, especially the grading limits, as modifications to our recommendations may be necessary.

Site Conditions

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description
Parcel Information	The project is located at 7185 West 11800 South in South Jordan, Utah. The location is at Latitude: 40.5364°N, Longitude: 112.06724°W (approximate). See Site Location
Existing Improvements	The property is undeveloped agricultural fields containing an existing mound of placed fill approximately 170 feet in diameter and ranging in height from 5 to 20 feet as seen in Exploration Plan .
Current Ground Cover	Agricultural vegetation and native grasses
Existing Topography	Slopes from the 11800 South Roadway at approximately 5,155 feet downward to the south at approximately 5,135 feet above mean sea level over approximately 350 linear feet.

Geotechnical Characterization

We have developed a general characterization of the subsurface conditions based on our review of the subsurface exploration, laboratory data, geologic setting, and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of the site. Conditions observed at each exploration point are indicated in the individual logs. The individual logs can be found in the **Exploration Results** and the GeoModel can be found in the **Figures** attachment of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description
1	Topsoil	Vegetative layer (i.e., topsoil) Varied from about 6 to 8 inches in depth with an average of about 7 inches encountered in B-01, B-02, B-03, B-06, and B-07
2	Fill	Existing fill encountered in B-04, B-05, and B-08 that varied from 17.5 to 18 feet in depth
3	Lean Clay	Medium stiff to hard lean clay with varying amounts of silt, sand, and gravel
4	Silt	Stiff to hard silt with varying amounts of sand
5	Sand	Medium dense to very dense sand with varying amounts of lean clay, silt, and gravel
6	Gravel	Dense to very dense gravel with varying amounts of lean clay, silt, and sand

The borings were observed during the field exploration for the presence and level of groundwater. Groundwater was not encountered in any of the borings during or after field exploration. These observations and interpretations represent groundwater conditions at the time of the field exploration and may not be indicative of other times or at other locations.

It should be recognized that fluctuations of the groundwater table will occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the future may be higher or lower than the levels indicated in the boring logs and should be considered when developing design and construction plans for the project. However, we do not believe groundwater will significantly impact the proposed construction.

November 8, 2023 | Terracon Project No. 61225118

Geologic Hazards

The project site is located in west Salt Lake County, Utah in the southwest corner of the town of South Jordan City. The site is located east of the Oquirrh Mountains along the eastern margin of the Basin and Range physiographic province. The northwest portion of the Basin and Range province is situated north of the Colorado Plateau and is bounded by the Wasatch Mountains to the east. Formed during middle and late Tertiary time (1 million years to 23 million years ago), the Basin and Range province is dominated by fault-controlled topography. The topography consists of mountain ranges and relatively flat, broad alluvial valleys. These mountain ranges and valleys have evolved from generally complex movements and associated erosional and depositional processes. Structurally, the site lies within the Salt Lake Valley. Drainage flows along local streams and rivers and slope wash during late Tertiary time, coupled with structural activity and Lake Bonneville deposition, are generally responsible for the present-day topography within the basin. The site is located in an area mapped as having very low liquefaction potential.¹

The geologic unit mapped² at the surface of the site is quaternary deposits from Lake Bonneville deposits and older alluvial deposits consisting of a mix of fine-grained and coarse-grained soils.

- Based on the project site, the density and type of subsurface soils encountered, and the lack of water table, the site has a very low liquefaction potential.
- The nearest known Quaternary fault is 7.1 miles west of the site along the Oquirrh-Southern Oquirrh Mountains fault zone.³
- The nearest controlling Quaternary fault is 12.1 miles east of the site along the Wasatch Fault Zone — Salt Lake City section.³

Faults are mapped along the nearby mountain foothills, at the base of the Wasatch Mountains to the east, and at the base of the Oquirrh Mountains to the west.

¹ Utah Geological Survey. (2020, May). *Utah Geologic Hazards Portal*. Retrieved April 10, 2023, from https://geology.utah.gov/apps/hazards/

² Hintze, L.F. (1980). *Geologic map of Utah: Utah Geological and Mineral Survey*, scale 1:500,000.

³ U.S. Geological Survey and Utah Geological Survey. *Quaternary Fault and Fold Database for the United States*. Retrieved April 10, 2023, from https://www.usgs.gov/natural-hazards/earthquake-hazards/faults

Fierracon

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Seismic Site Class

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the 2005 International Building Code (IBC). Based on the soil and geophysical properties observed at the site and as described in the exploration logs and results, our professional opinion is that a **Seismic Site Classification of D** be considered for the project. Subsurface explorations at this site were extended to a maximum depth of 90.4 feet and the average shear wave velocity of the two tests was **969.5 feet/second** based on Multichannel Analysis of Surface Waves (MASW).

Description	Value
Risk Category	III
2005 International Building Code Site Classification	D
Site Latitude	40.5369°
Site Longitude	-112.0682°

Liquefaction

The Maximum Considered Earthquake (MCE) used in our analysis is a magnitude 7.0 produced by the nearest controlling fault to the site, the Salt Lake City section of the Wasatch Fault (approximately 12.1 miles directly east of the proposed project site). The site modified peak ground acceleration of 0.403 g was used for calculation at the project site. A 2% probability of exceedance in 50 years (return period of 2,475 years) was used for the analysis.

Liquefaction potential was evaluated for borings B-07 and B-08. The site properties below the boring depth to 100 feet were estimated based on our experience and knowledge of geologic conditions of the general area. Based on the observed density of soils, and lack of observable water table, the potential for liquefiable soils was calculated as very low.

Corrosivity

The table below lists the results of laboratory soluble sulfate, soluble chloride, electrical resistivity, and pH testing. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Boring	Sample Depth (feet)	Soil Description	Soluble Sulfate (mg/kg)	Soluble Chloride (mg/kg)	Total Salts (mg/kg)	Electrical Resistivity (Ω-cm)	рН
B-01	0.5-1.5	Lean Clay with Sand	47	376	621	3,300	8.1
B-01	15-16.5	Silt with Sand	1,618	1,180	3,585	390	9.0
B-02	0.3-1.5	Silty Clay with Sand	96	320	545	3,100	7.2
B-04	0.3-1	Silty Clayey Sand with Gravel	129	219	755	4,000	8.8
B-06	15-16.5	Silty Sand	622	333	1,615	820	9.5
B-08	25-26.5	Sandy Silt	332	292	820	1,300	9.8

Corrosivity Test Results Summary

As discussed in Section 10.7.5 of the AASHTO LRFD Bridge Manual, 9th Edition, 2020, soils with resistivity values less than 2,000 ohm-cm can be indicative of a corrosive situation to ferrous materials. Based on the resistivity test results, the samples are indicative of a corrosive potential to ferrous materials.

Results of soluble sulfate testing indicate samples of the on-site soils tested possess low to moderate sulfate concentrations when classified in accordance with the ACI Design Manual 318. Concrete should be designed in accordance with the exposure class S1 and S2 provisions of the ACI Design Manual.

The pH, sulfates, sulfides, total dissolved salts, oxidation-reduction potential, and chlorides can affect the aggressiveness of corrosion to buried metal structures. These test results are provided to assist in determining the type and degree of corrosion protection that may be required. We recommend that a certified corrosion engineer be employed to determine the need for corrosion protection and to design appropriate protective measures.

Geotechnical Overview

The site appears suitable for the proposed construction based on geotechnical conditions encountered in the test borings, provided that the recommendations provided in this report are implemented in the design and construction phases of this project.

The subsurface materials generally consisted of gravel, sand, silt, and clay with varying amounts of silt, clay, and gravel extending to the maximum depth of the borings. Groundwater was not encountered within the maximum depths of exploration during or at the completion of drilling.

Based on the tank floor level (TFL) elevation of 5,127.5 feet, between 10 and 30 feet of excavation will be required to reach the elevation. Soils at this depth are expected to consist of lean clay with varying amounts of sand, silt, sandy silt, clayey sand, and poorly graded gravel with clay and sand. Based on the conditions encountered and estimated load-settlement relationships, the proposed tanks can be supported on conventional continuous or spread footings. Due to the varying types of soils near tank foundation elevations, the foundations should be supported on a 2-foot-thick uniform pad Structural Fill. Grading for the proposed foundations should incorporate the limits of the foundations plus a lateral distance beyond the outside edge of footings, where space is available. On-site soils are considered suitable to be used as backfill materials.

The near-surface, stiff to hard medium plasticity lean clay and high plasticity fat clay could become unstable with typical earthwork and construction traffic, especially after precipitation events. Effective drainage should be completed early in the construction sequence and maintained after construction to avoid potential issues. If possible, the grading should be performed during the warmer and drier times of the year. If grading is performed during the winter months, an increased risk for possible undercutting and replacement of unstable subgrade will persist. Additional site preparation recommendations, including subgrade improvement and fill placement, are provided in the **Earthwork** section.

The soils that form the bearing stratum for shallow foundations vary and exhibit potential for shrink-swell movements with changes in moisture. The **Shallow Foundations** section addresses support of the building directly bearing on engineered fill. We do expect significant live load on the floors and recommend overexcavation of near-surface soils to reduce the heave potential or use of suspended slabs to accommodate potential ground heave. The **Tank Bottom Slab** section addresses slab-on-grade support of the tanks using overexcavation techniques.

The recommendations contained in this report are based on the results of field and laboratory testing (presented in the **Exploration Results**), engineering analyses, and our current understanding of the proposed project. The **General Comments** section provides an understanding of the report's limitations.

Earthwork

Earthwork is anticipated to include clearing and grubbing, excavations, and engineered fill placement. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations include critical quality criteria, as necessary, to render the site in the state considered in our geotechnical engineering evaluation for foundations and on-grade slabs.

Site Preparation

Prior to placing fill, any existing vegetation, topsoil, and root mats should be removed. Complete stripping of the topsoil should be performed in the proposed structure(s) and parking/driveway areas.

Where fill is placed on existing slopes steeper than 5H:1V, benches should be cut into the existing slopes prior to fill placement. The benches should have a minimum vertical face height of 1 foot and a maximum vertical face height of 3 feet and should be cut wide enough to accommodate the compaction equipment. This benching will help provide a positive bond between the fill and natural soils and reduce the possibility of failure along the fill/natural soil interface.

Although no evidence of unexpected fill or underground facilities (such as septic tanks, cesspools, basements, and utilities) was observed during the exploration and site reconnaissance, such features could be encountered during construction. If unexpected fills or underground facilities are encountered, such features should be removed, and the excavation thoroughly cleaned prior to backfill placement and/or construction.

Subgrade Preparation

We recommend that the soils within the footprint of the proposed structures be removed to a minimum depth of 2 feet below the bottom of foundations (about 3 feet below bottom of tank bottom slab). Structural Fill placed beneath the entire footprint of the foundations should extend horizontally a minimum distance of 3 feet beyond the outside edge of footings. On-site soils are considered suitable to be used as backfill materials in non-structural areas due to the variability of fine-grained soils.

The subgrade should be proofrolled with an adequately loaded vehicle such as a fully loaded tandem-axle dump truck. The proofrolling should be performed under the observation of the Geotechnical Engineer or representative. Areas excessively deflecting under the proofroll should be delineated and subsequently addressed by the Geotechnical Engineer. Such areas should either be removed or modified by treating/applying/mixing with Portland cement or class C fly ash. Excessively wet or dry material should either be removed or moisture conditioned and recompacted.

All exposed areas that will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of 10 inches, moisture conditioned as necessary, and compacted per the compaction requirements in this report. Compacted Structural Fill soils should then be placed to the proposed design grade, and the moisture content and compaction of subgrade soils should be maintained until foundation or pavement construction.

Based on the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively workable; however, the workability of the subgrade may be affected by precipitation, repetitive construction traffic, or other factors. If unworkable conditions develop, workability may be improved by scarifying and drying.

Existing Fill

As noted in **Geotechnical Characterization**, borings B-04, B-05, and B-08 encountered previously placed fill to depths ranging from about 17.5 to 18 feet. We have no records to indicate the degree of control, and consequently, the fill is considered unreliable for support of foundation loads. However, even with the recommended construction procedures, inherent risk exists for the owner that compressible fill or unsuitable material, within or buried by the fill, will not be discovered. This risk of unforeseen conditions cannot be eliminated without completely removing the existing fill but can be reduced by following the recommendations contained in this report.

We recommend that this existing fill from the eastern tank area be placed in the western tank area to help minimize settlement associated to both tanks. Prior to the placement of fill, settlement monitors should be placed in at least 4 areas with one additional monitor placed in the middle. After fill is placed, the monitors should be checked periodically until less than 1/8th of an inch of movement is observed over at least 2 successive readings in a month. The estimated settlement from the proposed western tank is just over 1 inch. If a surcharge of the excess fill with a height of approximately 15 feet is placed, the estimated amount of settlement should take approximately 10 months or less.

Excavation

We anticipate that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. The bottom of excavations should be thoroughly cleaned of loose soils and disturbed materials prior to backfill placement and/or construction.

Soil Stabilization

Methods of subgrade improvement, as described below, could include scarification, moisture conditioning and recompaction, removal of unstable materials and replacement with granular fill (with or without geosynthetics). The appropriate method of improvement, if required, would be dependent on factors such as schedule, weather, the size of the area to be stabilized, and the nature of the instability. More detailed recommendations can be provided during construction as the need for subgrade stabilization occurs. Performing site grading operations during warm seasons and dry periods would help reduce the amount of subgrade stabilization required.

If the exposed subgrade is unstable during proofrolling operations, it could be stabilized using one of the methods outlined below.

- Scarification and Recompaction It may be feasible to scarify, dry, and recompact the exposed soils. The success of this procedure would depend primarily upon favorable weather and sufficient time to dry the soils. Stable subgrades likely would not be achievable if the thickness of the unstable soil is greater than about 1 foot, if the unstable soil is at or near groundwater levels, or if construction is performed during a period of wet or cool weather when drying is difficult.
- Crushed Stone The use of crushed stone or crushed gravel is a common procedure to improve subgrade stability. Typical undercut depths would be expected to range from about 12 to 24 inches below finished subgrade elevation. The use of high modulus geotextiles (i.e., engineering fabric or geogrid) could also be considered after underground work, such as utility construction, is completed. Prior to placing the fabric or geogrid, we recommend that all below-grade construction, such as utility line installation, be completed to avoid damaging the fabric or geogrid. Equipment should not be operated above the fabric or geogrid until one full lift of crushed stone fill is placed above it. The maximum particle size of granular material placed over geotextile fabric or geogrid should not exceed 1½ inches.

Further evaluation of the need and recommendations for subgrade stabilization can be provided during construction as the geotechnical conditions are exposed.

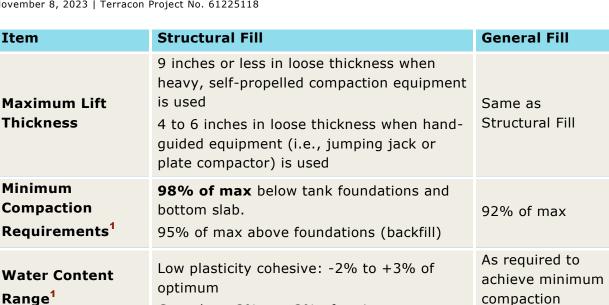
Fill Material Types

Fill required to achieve design grade should be classified as Structural Fill and General Fill. Structural Fill is material used below or within 10 feet of structures or constructed slopes. General Fill is material used to achieve grade outside of these areas.

Reuse of On-Site Granular Soil: Excavated on-site soil may be selectively reused as backfill around the tanks where it meets requirements of project specifications.

Excavated on-site soil with fine-grained soils is not suitable for reuse as Structural Fill and should not be placed beneath settlement sensitive structures and within foundation bearing zones. Portions of the on-site soil have an elevated fines content and will be sensitive to moisture conditions (particularly during seasonally wet periods) and may not be suitable for reuse when above optimum moisture content.

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than 4 inches in size. Pea gravel or other similar noncementitious, poorly graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer. Fill material should meet the following requirements:


			Requirements			
Fill Type ¹	Application	Gr				
		Size	Percent finer by weight	Plasticity		
Structural Fill ²	Below foundations, concrete slabs, or other structural areas, and within 5 feet of the building perimeter	4 inch No. 4 Sieve No. 200 Sieve	100 25-60 < 8 max	Liquid Limit 20 max Plasticity Index 5 max		
Stabilization Fill ²	Fill used to stabilize soft, potentially pumping subgrade	4 inch No. 200 Sieve	100 5 max			
On-Site Fill	General Fill unless it can meet Structural Fill requirements	4 inch No. 200 Sieve	100 < 35	Liquid Limit 35 max Plasticity Index 15 max		
On-Grade Slab Base Course	Immediately below on-grade slabs	In accordance with American Concrete Institute (ACI) 302.1R-15 and 360R-10				

- All fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.
- 2. Crushed angular rock with more than 50 percent with two fractured faces as per ASTM D 5821.

Fill Placement and Compaction Requirements

Structural and General Fill should meet the following compaction requirements.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

1. Maximum density and optimum water content as determined by the Modified Proctor test (ASTM D 1557).

Granular: -3% to +3% of optimum

Utility Trench Backfill

Any soft or unsuitable materials encountered at the bottom of utility trench excavations should be removed and replaced with Structural Fill or bedding material in accordance with public works specifications for the utility to be supported. This recommendation is particularly applicable to utility work requiring grade control and/or in areas where subsequent grade raising could cause settlement in the subgrade supporting the utility. Trench excavation should not be conducted below a downward 1:1 projection from existing foundations without engineering review of shoring requirements and geotechnical observation during construction.

On-site materials are considered suitable for backfill of utility and pipe trenches from 1 foot above the top of the pipe to the final ground surface, provided the material is free of organic matter and deleterious substances and meets requirements of project specifications.

Trench backfill should be mechanically placed and compacted as discussed earlier in this report. Compaction of initial lifts should be accomplished with hand-operated tampers or other lightweight compactors. Where trenches are placed beneath slabs or footings, the backfill should satisfy the gradation requirements of engineered fill discussed in this report. Flooding or jetting for placement and compaction of backfill is not recommended.

requirements

Grading and Drainage

All grades must provide effective drainage away from the building during and after construction and should be maintained throughout the life of the structure. Water retained next to the building can result in soil movements greater than those discussed in this report. Greater movements can result in unacceptable differential slab and/or foundation movements, cracked slabs and walls, and roof leaks.

Exposed ground should be sloped and maintained at a minimum of 5% away from the tank structures for at least 10 feet beyond the perimeter of the tank structure. After building construction and landscaping have been completed, final grades should be verified to document that effective drainage has been achieved. Grades around the structure should also be periodically inspected and adjusted, as necessary, as part of the structure's maintenance program. Where paving or flatwork abuts the structure, a maintenance program should be established to effectively seal and maintain joints and prevent surface water infiltration.

Earthwork Construction Considerations

Shallow excavations for the proposed structure are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to the construction of grade-supported improvements such as on-grade slabs. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to slab construction.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices and in accordance with any applicable local and/or state regulations.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety or the contractor's activities; such responsibility shall neither be implied nor inferred.

Excavations or other activities resulting in ground disturbance have the potential to affect adjoining properties and structures. Our scope of services does not include review of available final grading information or consider potential temporary grading performed by the contractor for potential effects such as ground movement beyond the project limits. A preconstruction/precondition survey should be conducted to document nearby

property/infrastructure prior to any site development activity. Excavation or ground disturbance activities adjacent to or near property lines should be monitored or instrumented for potential ground movements that could negatively affect adjoining property and/or structures.

Construction Observation and Testing

The earthwork efforts should be observed by the Geotechnical Engineer (or others under their direction). Observation should include documentation of adequate removal of surficial materials (vegetation, topsoil, and pavements), evaluation and remediation of existing fill materials, and proofrolling and mitigation of unsuitable areas delineated by the proofroll.

Each lift of compacted fill should be tested, evaluated, and reworked, as necessary, as recommended by the Geotechnical Engineer prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 square feet of compacted fill in the building areas and 5,000 square feet in pavement areas. Where not specified by local ordinance, one density and water content test should be performed for every 100 linear feet of compacted utility trench backfill, and a minimum of one test should be performed for every 12 vertical inches of compacted backfill.

In areas of foundation excavations, the bearing subgrade should be evaluated by the Geotechnical Engineer. If unanticipated conditions are observed, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer's presence into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

Shallow Foundations

If the site has been prepared in accordance with the requirements noted in **Earthwork**, the following design parameters are applicable for shallow foundations.

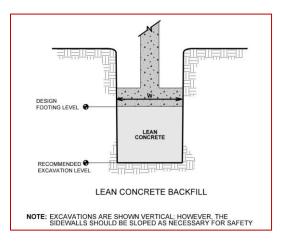
Design Parameters — Compressive Loads

Item	Description
Maximum Net Allowable Bearing	6,000 psf — foundations bearing upon
Pressure ^{1, 2}	Structural Fill (for tanks)

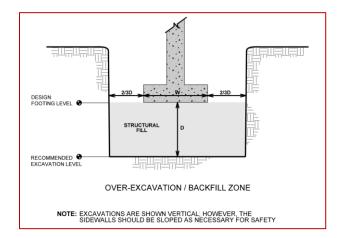
11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Thom	Description		
Item	Description		
	2,000 psf – foundations bearing upon		
	Structural Fill (for vaults and structures)		
Required Bearing Stratum ³	24" of Structural Fill extending to undisturbed native soils		
	unuisturbed native sons		
Ultimate Passive Resistance ⁴	480 pcf (granular backfill – unsaturated)		
(equivalent fluid pressures)	310 pcf (granular backfill — saturated)		
Sliding Resistance ⁵	0.45 allowable coefficient of friction -		
5	granular material		
Estimated Total Settlement From Structural Loads ²	Less than about 1/4 inch (East Tank with existing fill) Less than about 1/2 inch (West Tank with		
	use of surcharge)		
	Less than 1 inch (vaults and structures)		
Estimated Differential Settlement ^{2, 7}	About 1/2 of total settlement		

- 1. The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation.
- 2. Values provided are for maximum loads noted in **Project Description**. Additional geotechnical consultation will be necessary if higher loads are anticipated.
- Unsuitable or soft soils should be overexcavated and replaced per the recommendations presented in Earthwork.
- 4. Use of passive earth pressures requires the sides of the excavation for the spread footing foundation to be nearly vertical and the concrete placed neat against these vertical faces or that the footing forms be removed and compacted Structural Fill be placed against the vertical footing face. Assumes no hydrostatic pressure.
- 5. Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Frictional resistance for granular materials is dependent on the bearing pressure, which may vary due to load combinations. For fine-grained materials, lateral resistance using cohesion should not exceed ½ the dead load.
- 6. Differential settlements are noted for equivalent-loaded foundations and bearing elevation as measured over a span of 50 feet.


Foundation Construction Considerations

As noted in **Earthwork**, the footing excavations should be evaluated under the observation of the Geotechnical Engineer. The base of all foundation excavations should be free of water and loose soil prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.



Sensitive soils exposed at the surface of footing excavations may require surficial compaction with handheld dynamic compaction equipment prior to placing Structural Fill, steel, and/or concrete. Should surficial compaction not be adequate, construction of a working surface consisting of either crushed stone or a lean concrete mud mat may be required prior to the placement of reinforcing steel and construction of foundations.

If unsuitable bearing soils are observed at the base of the planned footing excavation, the excavation should be extended deeper to suitable soils; the footings could bear directly on these soils at the lower level or on lean concrete backfill placed in the excavations. The lean concrete replacement zone is illustrated in the sketch below.

Overexcavation for Structural Fill placement below footings should be conducted as shown below. The overexcavation should be backfilled up to the footing base elevation, with well graded gravel placed, as recommended in the **Earthwork** section.

Fierracon

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Tank Bottom Slab

Design parameters for tank bottom slabs assume the requirements for **Earthwork** have been followed. Specific attention should be given to positive drainage away from the structure and positive drainage of the aggregate base beneath the tank slab. As described previously, tank slabs should supported on at least 3 feet of compacted Structural Fill.

On-Grade Slab Design Parameters

Item	Description
Slab Support ¹	Use 4 inches base course meeting material specifications of ACI 302, placed on minimum 3 feet of compacted Structural Fill extending to native soils. Subgrade compacted to recommendations in Earthwork
Estimated Modulus of Subgrade Reaction ²	400 pounds per square inch per inch (psi/in.) for point loads

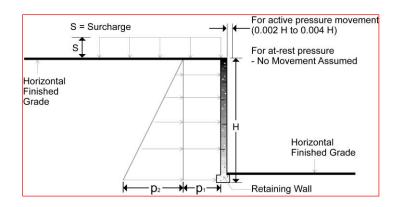
 Modulus of subgrade reaction is an estimated value based on our experience with the subgrade condition, the requirements noted in **Earthwork**, and the slab support as noted in this table. It is provided for point loads. For large area loads, the modulus of subgrade reaction would be lower.

Slab Construction Considerations

Finished tank subgrade should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until tank slabs are constructed. If the subgrade should become damaged or desiccated prior to the construction of slabs, the affected material should be removed, and Structural Fill should be added to replace the resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the slab support course.

The Geotechnical Engineer should observe the condition of the tank slab subgrades immediately prior to placement of the slab support course, reinforcing steel, and concrete.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118



Lateral Earth Pressures

Design Parameters

Tank walls should be designed for earth pressures at least equal to values indicated in the following table. Earth pressures will be influenced by the structural design of the walls, conditions of wall restraint, methods of construction and/or compaction, and the strength of the materials being restrained.

Two wall restraint conditions are shown in the diagram below – active and at-rest. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. This condition may exist if the tank walls are backfilled <u>before</u> construction of the tank top. The "at-rest" condition assumes no wall movement and would be the condition if the tank walls are backfilled <u>after</u> construction of the tank top. Note that the recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls (unless stated).

Lateral Earth Pressure Design Parameters

Earth Pressure	Coefficient for Backfill Type ²	Surcharge Pressure ³	Equivalent Fluid Pressure (psf) ^{2,4}	
Condition ¹	Buckini Type	<i>p</i> 1 (psf)	Unsaturated ⁵	Submerged ⁵
Active (K _a)	Granular — 0.27	(0.27) <i>S</i>	(35) <i>H</i>	(80) <i>H</i>
At-Rest (K_{\circ})	Granular — 0.43	(0.43) <i>S</i>	(55) <i>H</i>	(90) <i>H</i>

- For active earth pressure, wall must rotate about base, with top lateral movements 0.002 *H* to 0.004 *H*, where *H* is wall height. For passive earth pressure, wall must move horizontally to mobilize resistance. Fat clay or other expansive soils should not be used as backfill behind the wall.
- 2. Uniform, horizontal backfill, with a maximum unit weight of 115 pcf for cohesive soils and 130 pcf for granular soils.
- 3. Uniform surcharge, where *S* is surcharge pressure.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Lateral Earth Pressure Design Parameters

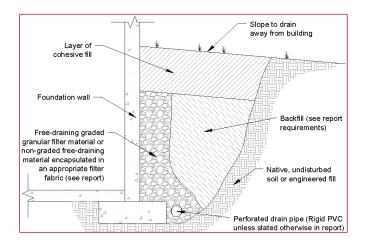
Earth Pressure	ure Backfill Type ²	Surcharge Pressure ³	-	uid Pressures f) ^{2,4}
Condition ¹		<i>p</i> 1 (psf)	Unsaturated ⁵	Submerged ⁵

4. Loading from heavy compaction equipment is not included.

 To achieve "Unsaturated" conditions, follow guidelines in Subsurface Drainage for Below-Grade Walls below. "Submerged" conditions are recommended when drainage behind walls is not incorporated into the design.

Backfill placed against structures should consist of granular soils. For the granular values to be valid, the granular backfill must extend out and up from the base of the wall at an angle of at least 45 degrees from vertical for the active case.

Loads bearing on backfill behind the tank walls may have a significant influence on the lateral earth pressure. Placing footings within wall backfill and in the zone of active soil influence on the wall should be avoided unless structural analyses indicate the wall can safely withstand the increased pressure.


The lateral earth pressure recommendations given in this section are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever or gravity type concrete walls. These recommendations are not applicable to the design of modular block geogrid reinforced backfill walls (also termed MSE walls). Recommendations covering these types of wall systems are beyond the scope of services for this project.

Subsurface Drainage for Below-Grade Walls

A perforated rigid plastic drain line installed behind the base of walls and extending below adjacent grade is recommended to prevent hydrostatic loading on the walls. The invert of a drain line around a below-grade building area or exterior retaining wall should be placed near foundation bearing level. The drain line should be sloped to provide positive gravity drainage to daylight or to a sump pit and pump. The drain line should be surrounded by clean, free-draining granular material having less than 5% passing the No. 200 sieve, such as No. 57 aggregate. The free-draining aggregate should be encapsulated in a filter fabric. The granular fill should extend to within 2 feet of final grade, where it should be capped with compacted cohesive fill to reduce infiltration of surface water into the drain system.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

As an alternative to free-draining granular fill, a prefabricated drainage structure may be used. A prefabricated drainage structure is a plastic drainage core or mesh that is covered with filter fabric to prevent soil intrusion and is fastened to the wall prior to placing backfill.

General Comments

Our analysis and opinions are based on our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, or bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials, or hazardous conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no thirdparty beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not

intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

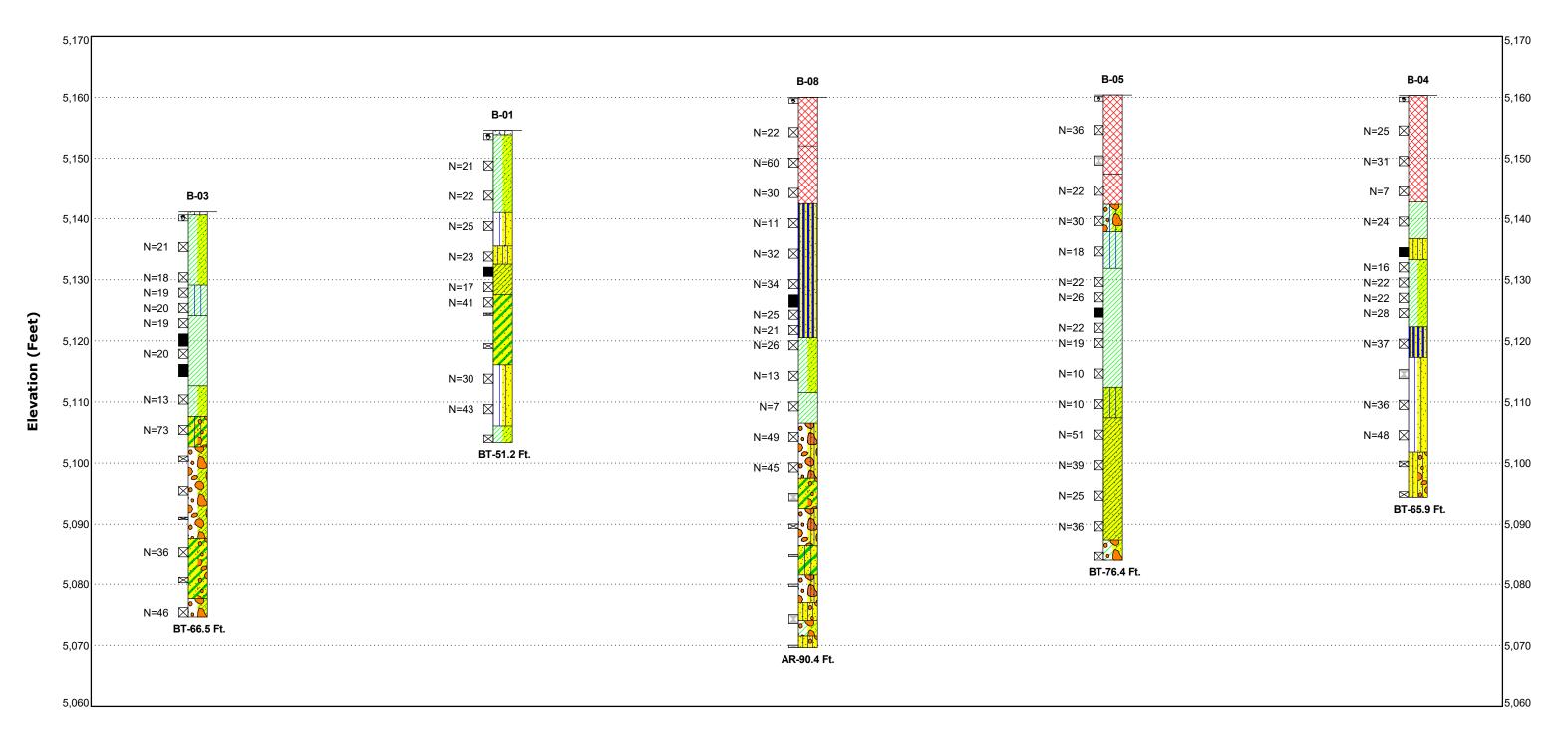
Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly affect excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety and cost estimating including excavation support and dewatering requirements/design are the responsibility of others.

Construction and site development have the potential to affect adjacent properties. Such impacts can include damage due to vibration, modification of groundwater/surface water flow during construction, foundation movement due to undermining or subsidence from excavation, and noise or air quality concerns. Evaluation of these items on nearby properties is commonly associated with contractor means and methods and is not addressed in this report. The owner and contractor should consider a preconstruction/precondition survey of the surrounding development. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Figures

Contents:


GeoModel

Jacobs - 118th South Water Tanks 11800 South and U-111 | Herriman, Utah Terracon Project No. 61225118

Subsurface Profile

Notes	Water Level Observations	Explanation	Material Le
See Exploration Plan for orientation of soil profile. See General Notes in Supporting Information for symbols and soil classifications. Soils profile provided for illustration purposes only. Soils between borings may differ AR - Auger Refusal BT - Boring Termination	Water Level Reading at time of drilling. Water Level Reading after drilling.	B-01 Borehole Number MoistureW K ContentW K Sampling IL PL Liquid and Plastic Limits Borehole (See General Notes) AR Borehole BT Borehole Termination Type	Topsoil Lean Clay with Sand

6949 S High Tech Dr Ste 100 Midvale, UT

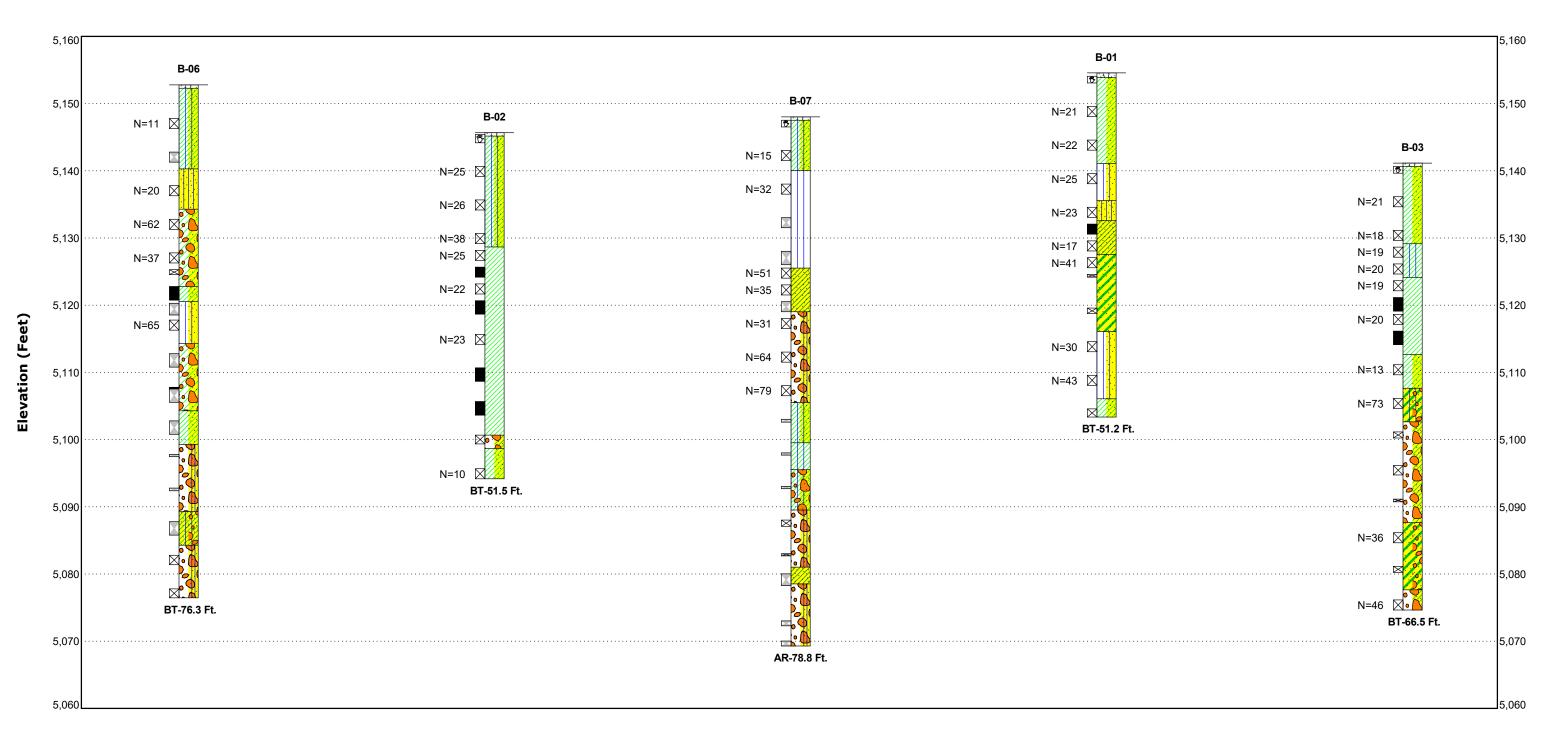
East 🗩

Legend

Lean Clay

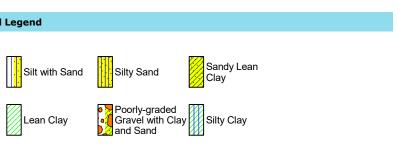
🕗 Gravel

Silty Clayey Sand with



Jacobs - 118th South Water Tanks 11800 South and U-111 | Herriman, Utah Terracon Project No. 61225118

Subsurface Profile


Notes	Water Level Observations	Explanation	Materia
See Exploration Plan for orientation of soil profile. See General Notes in Supporting Information for symbols and soil classifications. Soils profile provided for illustration purposes only. Soils between borings may differ AR - Auger Refusal BT - Boring Termination	 Water Level Reading at time of drilling. Water Level Reading after drilling. 	B-01 Borehole Number MoistureW M LL PL — Liquid and Plastic Limits ContentW M LL PL — Liquid and Plastic Limits Sampling Borehole Lithology AR Borehole Termination Type	Topsoil Lean Clay with Sand

🗲 West

6949 S High Tech Dr Ste 100 Midvale, UT

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Attachments

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Exploration and Testing Procedures

Field Exploration

Number of Borings	Approximate Boring Depth (feet)	Location
2	50	Tank Walls
2	65	Tank Walls +15 feet of cover
2	75	Tank Walls + 20 feet of cover
1	95	Tank Interior (Western Tank)
1	110	Tank Interior + 20 feet of cover (Eastern Tank)

Boring Layout and Elevations: Terracon personnel provided the boring layout using handheld GPS equipment (estimated horizontal accuracy of about ± 10 feet) and referencing existing site features. Approximate ground surface elevations were estimated using Google Earth. If elevations and a more precise boring layout are desired, we recommend borings be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a truck-mounted rotary drill rig using continuous flight hollow-stem augers. Four samples were obtained in the soils near the foundation elevations of each boring and at intervals of 5 feet thereafter. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge was pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated in the boring logs at the test depths. A 3-inch O.D. split-barrel sampling spoon with 2.5-inch I.D. ring-lined sampler was used for sampling. Ring-lined, split-barrel sampling procedures are similar to standard splitspoon sampling procedures; however, blow counts are typically recorded at 6-inch intervals for a total of 12 inches of penetration. We observed and recorded groundwater levels during drilling and sampling. For safety purposes, all borings were backfilled with auger cuttings after their completion.

We also observed the boreholes while drilling and at the completion of drilling for the presence of groundwater. Groundwater was not observed at these times in the boreholes.

The sampling depths, penetration distances, and other sampling information were recorded in the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials observed during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Geophysical Survey: Terracon subcontracted with Intermountain GeoEnvironmental Services, Inc. to perform a series of shear wave velocity surveys using the Multichannel Analysis of Surface Waves (MASW) technique at the site. A dispersion curve is calculated from the data that shows the phase velocity of the surface wave as a function of frequency or wavelength. A shear wave velocity depth profile is then modeled from the dispersion curves and the shear wave velocity profile of the shallow subsurface is reported (V_{S100}).

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests. The laboratory testing program included the following types of tests:

- Moisture Content
- Dry Unit Weight
- Consolidation
- Unconsolidated-Undrained Triaxial Compression
- Grain Sieve
- Atterberg Limits
- Chemical Analyses pH, Sulfates, Chloride Ion, Total Salts, Electrical Resistivity

The laboratory testing program often included examination of soil samples by an engineer. Based on the results of our field and laboratory programs, we described and classified the soil samples in accordance with the Unified Soil Classification System.

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Site Location and Exploration Plans

Contents:

Site Location Plan Exploration Plan Site Geologic Map Subsurface Profile Cross Section A-A' (East Tank) Subsurface Profile Cross Section B-B' (West Tank)

Note: All attachments are one page unless noted above.

Geotechnical Engineering Report 11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Site Location

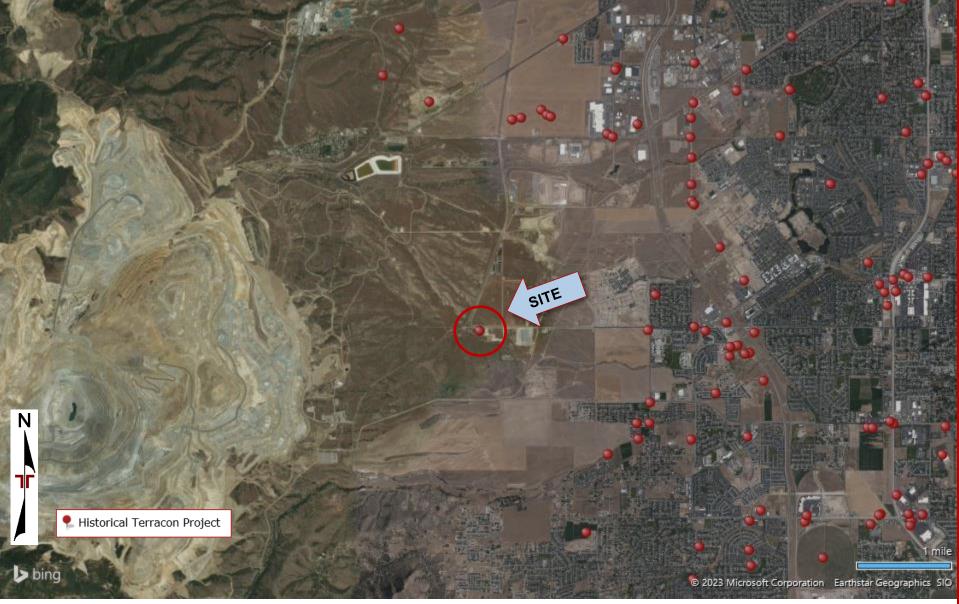
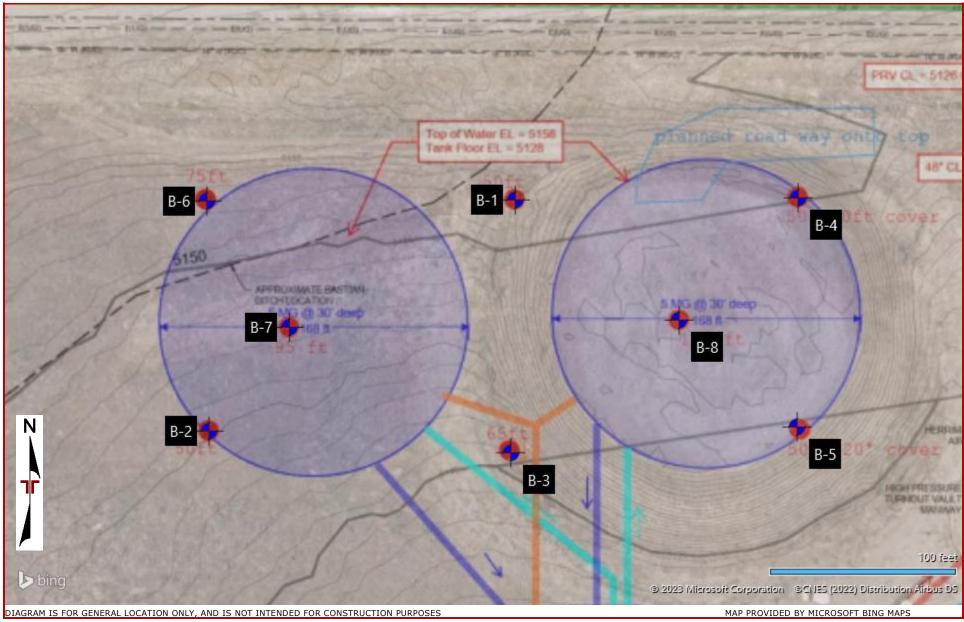
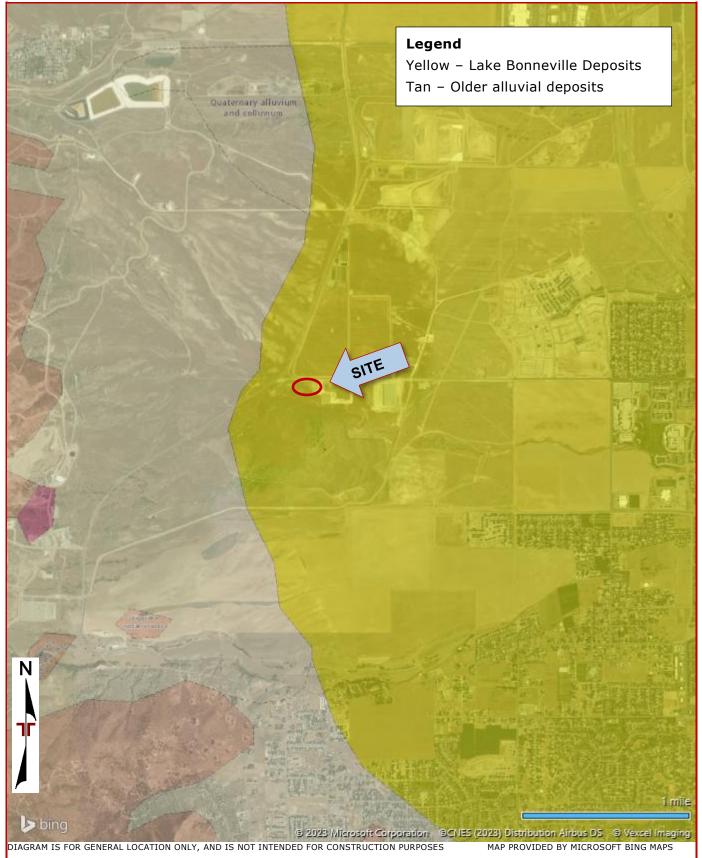


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES


MAP PROVIDED BY MICROSOFT BING MAPS

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118


Exploration Plan

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

Geologic Map

Exploration and Laboratory Results

Contents:

Boring Logs (B-01 through B-08) Atterberg Limits (2 pages) Grain Size Distribution (3 pages) Consolidation/Swell (7 pages) Unconsolidated-Undrained Triaxial Compression (7 pages) Moisture Density Relationship (3 pages) Corrosion Testing (2 pages)

Note: All attachments are one page unless noted above.

go	Location: See Exploration Plan		$\overline{\cdot}$	le st	be	In.)	ŗ	(%	cf)	Atterberg Limits	
Graph	Latitude: 40.5367° Longitude: -112.0670°		Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
<u>x⁴ 1_x: .x¹</u>	Depth (Ft.) Elevation.: 5154.5668 (Ft 0.7 TOPSOIL 5153				- 0				-		
	LEAN CLAY WITH SAND (CL), light brown, very stiff				E.S.			16.3	-	26-17-9	76
			5 — _ _		X	4	7-10-11 N=21	16.3	-		
			- - 10- -		X	7	5-10-12 N=22	15.6	-		
	3.5 5141 SILT WITH SAND (ML), light brown, very stiff								-		
			15 - -		X	11	7-12-13 N=25	13.8	-		
	9.0 5135 SILTY SAND (SM), light brown, medium dense 22.0 5132		_ 20_ _		X	7	9-11-12 N=23	_			
	SANDY LEAN CLAY (CL), light brown to brown, very stiff, trace pinholes		_			20		21.3	97	34-15-19	70
	27.0 5127		25-		X	22	5-7-10 N=17	22.5	-		
	CLAYEY SAND (SC) , trace gravel and cobbles, brown, dense to very dense		_		X	20	6-20-21 N=41	13.3	-	32-16-16	47
			30								
procedi See Su Notes	ploration and Testing Procedures for a description of field and laboratory ares used and additional data (If any). pporting Information for explanation of symbols and abbreviations.	Wate	r Leve e wate	er ob: ent M	serve l ethc	ed.				Drill Rig CME 75 Hammer Typ Automatic Driller Davis Logged by	e
		Aban Boring					cuttings upon con	npletion.		LL Boring Start 01-24-2023 Boring Comp 01-24-2023	

Graphic Log	Location: See Exploration Plan Latitude: 40.5367° Longitude: -112.0670° Depth (Ft.) Elevation.: 5154.5668 (Ft.) CLAYEY SAND (SC), trace gravel and cobbles, brown, dense	Depth (Ft.)	Water Level Observations	Sample Type	O Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits	Percent Fines
	38.5 5116.0 SILT WITH SAND (ML), brown, very stiff to hard, trace pinholes			\times	6	41-50/4"	5.6			
		40- - - 45- -	-	X	10	8-14-16 N=30 12-20-23 N=43	19.4 22.0		NP	85
	48.5 5106.0 LEAN CLAY WITH SAND (CL), trace gravel, brown, hard 51.2 5103.3 Boring Terminated at 51.2 Feet	50-		X	15	1-27-50/2"	20.3			
procec See Si Notes	ion Reference: Elevations were provided by others.	Water Lev No free wa Advancem Hollow Ster	ter ob Ient M m Aug	serve letho er	ed od				Drill Rig CME 75 Hammer Typ Automatic Driller Davis Logged by LL Boring Starte	
	A B	Abandonn Boring back	nent N kfilled	leth with	od auger	cuttings upon com	pletion.		01-24-2023 Boring Comp 01-24-2023	

	Borning Log I									
бć	Location: See Exploration Plan		<u>– s</u>	ec	[n.)	Ļ	(%)	cf)	Atterberg Limits	
Graphic Log	Latitude: 40.5363° Longitude: -112.0676°	Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
ŝrapł		epth	Vater	amp	COVE	Field Res	onte	Dry Veigh	LL-PL-PI	Per Fii
	Depth (Ft.) Elevation.: 5145.665 (Ft.))	>0	0	Re		0	>		
	0.5 TOPSOIL 5145. SILTY CLAY WITH SAND (CL-ML), light brown, very stiff to	17		m			15.1		23-18-5	72
	hard									
		_								
		-								
	- trace gravel	5 -		\bigtriangledown	7	6-11-14	9.2			
		-		\square	'	N=25	5.2			
		-								
		-								
		-								
		10-		\bigtriangledown	6	7-13-13	0.7			
		-		\triangle	6	N=26	8.7			
		-								
		-								
		15-	-			8-16-22				
				М	7	N=38	10.4			
	17.0 5128. LEAN CLAY (CL), light gray, very stiff, oxidation stains	67								
	, ; ; ; ; , ; , ; , ; ; ; ; ; ; ;	-		\bigvee	10	9-11-14	16.6			
		-		\square		N=25				
		20-								
		-	_		18		20.5		34-19-15	93
		-	_							
		-	_	\bigvee	13	6-10-12	33.7			
		-	_	\square		N=22				
		25-								
		-			25		24.4	87	37-20-17	93
		-								
		-	-							
			-							
/////										
See E	······································	Water Lev No free wa				:			Drill Rig CME 75	
	apporting Information for explanation of symbols and abbreviations.								Hammer Typ	e
									Automatic Driller	
Notes		Advancen Hollow Ste			d				Davis	
Elevat	ion Reference: Elevations were provided by others.		9						Logged by	
		Abandonn							Boring Starte 01-24-2023	ed
	E	Boring bac	ktilled	with	auger	cuttings upon com	pletion.		Boring Comp 01-24-2023	leted
									51 24-2025	

			<u> </u>						Atterberg	
60 [°]	Location: See Exploration Plan	· ·	e d	,be	Recovery (In.)	s t	Water Content (%)	Dry Unit Weight (pcf)	Limits	
Graphic Log	Latitude: 40.5363° Longitude: -112.0676°	Depth (Ft.)	Water Level Observations	Sample Type	ry (Field Test Results	nt (Uni t (p		Percent Fines
aph		pth	ater	dm	ove	ield Res	Na	ory eigh	LL-PL-PI	Perc
ģ			Š₿	Sa	Rec	Ц.	ů	We		
	Depth (Ft.) Elevation.: 5145.665 (Ft.) LEAN CLAY (CL), light gray, very stiff, oxidation stains)	_							
	<u>LEAN CLAY (CL)</u> , light gray, very still, oxidation stalls (continued)			X	13	6-10-13 N=23	19.4			
				$ \rangle$		N=23				
			-							
			_							
		35	-							
			_		23		31.0		36-20-16	92
			-							
			_							
		1.0								
		40	-							
			_		24		25.5	100		
			_							
			_							
	45.0 5100.	⁶⁷ 45								
	POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC), brown, very dense	45		\mathbb{N}	10	9-12-50/4"	10.5			
	brown, very dense		-	\square	10	5 12 50/4	10.5			
	47.0 5098.	67	_							
	LEAN CLAY WITH SAND (CL), trace gravel, brown, stiff									
			-							
		50-	_							
					18	2-4-6 N=10	23.8		33-19-14	79
	51.5 5094.	17		$\downarrow $		N=10				
	Boring Terminated at 51.5 Feet									
		Mata			-					·
See Ex	plotation and resting roceaules for a description of neid and laboratory	Water Le No free w							Drill Rig CME 75	
	upporting Information for explanation of symbols and abbreviations.								Hammer Typ	e
									Automatic	
									Driller Davis	
Notes Elevat		Advance Hollow Ste			ba				Logged by	
		Abandon	ment	Meth	ho				Boring Starte	ed
						cuttings upon com	oletion.		Boring Comp 01-24-2023	leted

				1	_				Attarb	
бо	Location: See Exploration Plan	\neg	la sc	be	Recovery (In.)	, st	(%	cf t	Atterberg Limits	
Graphic Log	Latitude: 40.5363° Longitude: -112.0670°	Depth (Ft.)	Water Level Observations	Sample Type	г <u>у</u> (Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
hde	-	pth	serva	mple	ove	eld Resi	Wa	igh	LL-PL-PI	Fin
Ū		De	Åå	Sa	Sec	Ē -	Ō	×		-
·	Depth (Ft.) Elevation.: 5141.1474 (Ft.	.)	_		-					
	0.5 TOPSOIL 5140. LEAN CLAY WITH SAND (CL), light brown, very stiff	.65		en l						
	<u>LEAN GEAT WITH SAND (GEJ</u> , light blown, very still			m						
			-							
			_							
		5-	_							
				X	6	3-8-13 N=21	14.2			
				\vdash						
			_							
		10		7		4-8-10				
			_	X	9	N=18	12.9			
	12.0 5129.	.15		\vdash						
	SILTY CLAY (CL-ML), light brown, very stiff									
			-	IX.	7	7-8-11 N=19	17.5			
			_	\square		N=15				
		15								
		15		\mathbb{N}	13	6-9-11	21.0			
			_	\square	15	N=20	21.0			
	17.0 5124.	.15	_							
	LEAN CLAY (CL), light brown, very stiff			7		F 0 11				
				X	13	5-8-11 N=19	20.3			
			-	\vdash						
		20	_							
					22		21.2	0.2	22 10 14	
					23		21.3	92	33-19-14	88
			-							
			_	∇		5-9-11			20.40.44	
	- silty sand lenses			M	14	N=20	19.1		30-19-11	90
		25	-							
			_		23		23.3			
	28.5 5112.	.65	_							
	LEAN CLAY WITH SAND (CL), light brown, stiff		_							
<u> </u>		Water Le		SAR	ation				D.:	
See Exproced	cploration and Testing Procedures for a description of field and laboratory lures used and additional data (If any).	No free w							Drill Rig CME 75	
See S	upporting Information for explanation of symbols and abbreviations.								Hammer Typ	e
									Automatic	
Net		Adverse		1 at la					Driller Davis	
Notes Elevat		Advance Hollow St			a				Logged by	
									LL	
		Abandon	ment	Noth	bd				Boring Starte 01-25-2023	ed
						cuttings upon com	pletion.			
									Boring Comp 01-25-2023	recea

Log	Location: See Exploration Plan	ť.)	vel	Type	(In.)	est ts	r (%)	nit pcf)	Atterberg Limits	n t
Graphic Log	Latitude: 40.5363° Longitude: -112.0670° Depth (Ft.) Elevation.: 5141.1474 (Ft	Depth (Ft.)	Water Level	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
	Depth (Ft.) Elevation.: 5141.1474 (Ft LEAN CLAY WITH SAND (CL), light brown, stiff (continued))	-	X	17	5-7-6 N=13	28.3		35-20-15	83
	33.5 5107 SILTY CLAYEY SAND WITH GRAVEL (SC-SM), light brown,	7.65	_							
200	very dense	35	_		7	16-37-36 N=73	9.1			
	38.5 5102	2.65	_							
	POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC) , light brown to brown, very dense	40	_		7	39-50/5"	_			
			-				-			
		45								
				X	7	28-36-50/5"	5.7			
			_							
		50		×	5	50/5"				
	53.5 5087 CLAYEY SAND WITH GRAVEL (SC), light brown to brown, dense to very dense	7.65	_							
		55	_		10	11-16-20 N=36	9.8		26-16-10	33
0000	- 4 inch cobbles		_							
		60								
	cploration and Testing Procedures for a description of field and laboratory lures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.	Water Le No free w				5			Drill Rig CME 75 Hammer Typ Automatic	e
Notes Elevat	ion Reference: Elevations were provided by others.	Advance Hollow St			od				Driller Davis Logged by LL	
		Abandon Boring ba	ment ckfilled	Meth I with	od auger	cuttings upon com	oletion.		Boring Start 01-25-2023 Boring Comp 01-25-2023	

bo.	Location: See Exploration Plan	\sim	el su	,pe	In.)	î, st	(%	it)cf)	Atterberg Limits	
Graphic Log	Latitude: 40.5363° Longitude: -112.0670°	h (Ft	r Lev vation	Sample Type	ery (Field Test Results	ater ent ('	v Uni ht (p		Percent Fines
Grap		Depth (Ft.)	Water Level Observations	Samp	Recovery (In.)	Fiel Re	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Ъе
	Depth (Ft.) Elevation.: 5141.1474 (F		+				Ľ			
	CLAYEY SAND WITH GRAVEL (SC), light brown to brown, dense to very dense (continued)		_	X	7	33-50/5"				
20										
3										
	POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC),	7.65								
	light brown to brown, dense	65								
		00		\mathbb{N}	10	34-16-30 N=46	8.1			
	66.5 507 Boring Terminated at 66.5 Feet	4.65		\downarrow		N=46				
	g									
See E	cploration and Testing Procedures for a description of field and laboratory lures used and additional data (If any).	Water Lo				5			Drill Rig CME 75	
	upporting Information for explanation of symbols and abbreviations.	No free V	valer of	JServe	eu				Hammer Typ	e
									Automatic	
Notes		Advance	ment	Metho	bd				Driller Davis	
Elevat	ion Reference: Elevations were provided by others.	Hollow St	em Au	ger					Logged by	
		About		Meth	od				Boring Starte 01-25-2023	ed
		Abandor Boring ba	ckfilled	l with	auger	cuttings upon com	pletion.			
									Boring Comp 01-25-2023	

							_			
бo	Location: See Exploration Plan		la sc	ed	In.)		(%	t cf)	Atterberg Limits	
Graphic Log	Latitude: 40.5366° Longitude: -112.0665°	Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
irapł		epth	Vater bsen	amp	COVE	Field	Wi	Dry /eigh	LL-PL-PI	Per
	Depth (Ft.) Elevation.: 5160.2975 (Ft.)		>0	l o	Re		0	5		
	FILL - SILTY CLAYEY SAND WITH GRAVEL (SC-SM), brown to dark brown, loose to dense			m			10.2		24-17-7	48
>>>>		-								
		-								
		-	-							
>>>>		-	_							
		5-								
				\mathbb{N}	7	3-14-11 N=25				
				$ \land$		N=23	-			
		-								
	- cobbles 4" - 6"	-								
***		-								
	- more clay	10-					-			
>>>>		-	-	X	14	13-14-17 N=31				
		_		ŕ	•		-			
		_								
		15-				3-3-4				
		-		\land	3	N=7	8.2			
	17.5 5142	.8 -								
	LEAN CLAY (CL), light brown to brown, medium stiff to very stiff	- 1	-							
	Still	_								
		20-								
		20		\mathbb{N}	6	6-10-14 N=24	12.5			
				\vdash		N-24				
		-								
	23.5 5136	.8 -								
	SILTY SAND (SM), light brown	-								
		25-								
		-					8.3			
	27.0 5133	.3								
	LEAN CLAY WITH SAND (CL), light brown, very stiff	_				7-7-9				
				M	7	N=16				
See 5	valeration and Testing Drecodures for a description of field and laboration		/el Oh	serv	ation		1			
proced	lures used and additional data (If any).	No free wa							Drill Rig CME 75	
See S	upporting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	e
									Driller	
Notes	E	dvancen Iollow Ste			bd				Davis	
Elevat	ion Reference: Elevations were provided by others.								Logged by	
		bandonn	nent I	Meth	od				Boring Start 01-25-2023	ed
	E	Boring bac	kfilled	with	auger	cuttings upon com	pletion.		Boring Comp	

Boring Completed 01-25-2023

	Boring Log				F					
Б	Location: See Exploration Plan		0	ø	(). L			f)	Atterberg Limits	
Graphic Log	Latitude: 40.5366° Longitude: -112.0665°	Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LITTICS	ent es
aphi		pth	ater L serva	mple	over	ield Resu	Wat	ory l	LL-PL-PI	Percent Fines
Ū			%å	Sa	Rec	ii –	Ō	Ne C		-
	Depth (Ft.) Elevation.: 5160.2975 (Ft. LEAN CLAY WITH SAND (CL), light brown, very stiff)								
	(continued)			X	9	6-11-11 N=22				
							-			
						5-10-12				
				X	10	N=22	14.3		29-18-11	79
		35-				5-12-16				
		-		\land	10	N=28	17.5			
	38.0 5122 SANDY SILT (ML), trace gravel, light brown, hard	2.3								
	SANDY SILI (ML), trace gravel, light brown, hard									
		40-								
		40		\mathbb{N}	12	7-13-24	9.7			
				\square		N=37	5.7			
		-								
	43.0 5117 SILT WITH SAND (ML), light brown, hard	7.3	-							
			-							
		45-	_							
					16	20-29-33	21.8		NP	76
		-								
	- trace pinholes	50-				0.44.00				
				XI	11	9-14-22 N=36	18.7			
		55-	1	\bigtriangledown		13-21-27	10.0			
		.	-	\wedge	13	N=48	16.8			
			-							
	58.5 5101	1.8	-							
0	SILTY SAND WITH GRAVEL (SM), light brown, very dense		_							
		60								
See E	protocol and resching ribecaules for a description of hera and laboratory	Water Le	vel Ob	serv	ations				Drill Rig	
proced		No free w	ater ob	serve	ed				Drill Rig CME 75	
566.2									Hammer Typ Automatic	e
									Driller Davis	
Notes Elevat		Advancer Hollow Ste			bd				Logged by	
									LL	
		Abandon	ment	Meth	od				Boring Starte 01-25-2023	ed
		Boring bad	rtilled	with	auger	cuttings upon com	pletion.		Boring Comp 01-25-2023	leted
									01-25-2023	

Ď	Location: See Exploration Plan			0	ĕ	(In.)	ц	(o)	(J.	Atterberg Limits	
Graph	Latitude: 40.5366° Longitude: -112.0665°		Depth (Ft.)	Water Level Observations	Sample Type	Recovery (I	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
0	Depth (Ft.) Elevation.: 5160.2975 (Ft.) SILTY SAND WITH GRAVEL (SM), light brown, very dense)			\bigtriangledown	8	40-50/5"	8.0		NP	40
	(continued) 65.9 5094		- - 55-		\times	11	29-50/5"	4.1			
	Boring Terminated at 65.9 Feet				$ \rightarrow $						
See Ex		Water					;			Drill Rig CME 75	
	Jures used and additional data (If any).	No free	e wat	er obs	serve	d				CME 75 Hammer Type Automatic Driller	e
Notes Elevat		Advan Hollow				d				Davis Logged by	
		h	0	ort t	10 ⁺	d				Boring Starte	ed
		Aband Boring					cuttings upon comp	letion.		01-25-2023 Boring Comp 01-25-2023	leted

				1		· · · ·					1
бо	Location: See Exploration Plan		$\overline{\cdot}$	la el	be	Recovery (In.)		(%	€,	Atterberg Limits	
Graphic Log	Latitude: 40.5362° Longitude: -112.0665°		Depth (Ft.)	Water Level Observations	Sample Type	ery (Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
rapł			epth	/ater	amp	CO K	Field	onte	Dry	LL-PL-PI	Per
G	Depth (Ft.) Elevation.: 5160.3966 (F	E+)	Δ	≤⊇	S	Re	_	Ŭ	3		
$\times\!\!\times\!\!\times$	FILL - SILTY CLAYEY SAND WITH GRAVEL (SC-SM), brown to				m						
\bigotimes	dark brown, dense		-		17						
>>>			_								
\otimes			_								
\bigotimes			_								
\times			5 –				11-17-19	_			
\times			_	-	X	8	N=36				
			_		ŕ						
\otimes			_								
\bigotimes											
\bigotimes			_								
\bigotimes			10-								
\bigotimes			_	_		14	5-22-43	6.6	106		
\bigotimes			_								
\bigotimes		47.4									
\bigotimes	FILL - SANDY LEAN CLAY WITH GRAVEL (CL), brown to dark brown, very stiff										
\bigotimes			_								
\bigotimes			15-				2 6 16	_			
\bigotimes			_		X	10	3-6-16 N=22				
\bigotimes			_	_				_			
\bigotimes	18.0 51	42.4									
<u> </u>	GRAVELLY SILTY CLAY WITH SAND (CL-ML), dark brown, very stiff to hard										
76			_								
R.			20-				0.15.15				
76			_		X	12	9-15-15 N=30	10.8			
R.C.			_		r `						
	22.5 51 SILTY CLAY (CL-ML), light brown, very stiff	.37.9	_								
			_								
			25–	1			4-7-11				
			-		M	12	N=18	12.2			
			_								
			_								
X X	28.5 51 LEAN CLAY (CL), light brown to gray, stiff to very stiff,	.31.9									
	oxidation stains		-								
		14/-/	30					-	1		
See Exproced	cploration and Testing Procedures for a description of field and laboratory lures used and additional data (If any).		er Lev ree wa							Drill Rig CME 75	
See <mark>S</mark> ı	upporting Information for explanation of symbols and abbreviations.									Hammer Typ	e
										Automatic Driller	
Notes			ancem			bd				Davis	
Elevat	ion Reference: Elevations were provided by others.	Hollo	w Ster	m Aug	ler					Logged by	
										Boring Starte	ed
			ndonn ng back				cuttinas upon com	pletion		01-26-2023	
		Boring backfilled with auger cuttings upon completion. Boring 01-26-									

—			1						Atterberg	<u> </u>
Log	Location: See Exploration Plan	ť.)	vel	ype	(In.	st	r (%)	nit pcf)	Limits	
Graphic Log	Latitude: 40.5362° Longitude: -112.0665°	Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
	Depth (Ft.) Elevation.: 5160.3966 (Ft. LEAN CLAY (CL), light brown to gray, stiff to very stiff, oxidation stains (continued)	-		X	17	4-8-14 N=22	23.6			
					15	6-11-15 N=26	19.2		30-19-11	92
	- pinholes	35-			18	PP = 5.0 tsf	20.7			
						7-9-13				
		40-			13	N=22	20.3			
				X	18	5-8-11 N=19	24.6			
		-	-							
		45-	_		18	5-5-5 N=10	25.7		34-19-15	89
	48.0 511. SANDY SILTY CLAY (CL-ML), gray, stiff, oxidation stains	- <u>2.4</u>	-							
		50-	_	X	17	3-3-7 N=10	24.6			
	53.0 510 SANDY LEAN CLAY (CL), gray to brown, very stiff to hard	7.4								
		55-			11	3-21-30 N=51	20.1			
		-								
		60								
proced	ploration and Testing Procedures for a description of field and laboratory lures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.	Water Le No free w				:			Drill Rig CME 75 Hammer Typ Automatic	e
Notes Elevat		Advancer Hollow Ste			bd				Driller Davis Logged by	
		Abandon Boring bad				cuttings upon com	pletion.		Boring Starte 01-26-2023 Boring Comp 01-26-2023	

		-							۸ 4 4 م امه مامه ۲۰۰۰ ۲۰	
бо	Location: See Exploration Plan		ا ء د	e B	(In.)		(%	cf)	Atterberg Limits	
ic L	Latitude: 40.5362° Longitude: -112.0665°	(Ft	Levi	e Ty	ry (ults	nt ('	t (p		cent
Graphic Log		Depth (Ft.)	Water Level Observations	Sample Type	Recovery	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
ي ا		De	Š₫	Sa	Rec	ш.	Ö	We		-
77.1.17	Depth (Ft.) Elevation.: 5160.3966 (Ft.) SANDY LEAN CLAY (CL), gray to brown, very stiff to hard			\vdash						
	<u>SANDY LEAN CLAY (CL)</u> , gray to brown, very stiff to hard (continued)			X	15	1-10-29 N=39	18.0		32-18-14	70
				$\langle \cdot \rangle$		N=39				
		-								
		-								
		-								
		65-	_							
		_		X	6	7-10-15 N=25				
				\vdash		25				
		-								
		-	-							
		_								
		70-	1	$ \land$		11-17-19				
		-	_	X	9	N=36	9.2			
				\vdash						
	72.0									
	73.0 5087 CLAYEY GRAVEL WITH SAND (GC), trace cobbles, gray to	4 -	-							
• • •	brown, very dense	-	_							
		75								
0		75-	1	$ \land $	-					
0	76.4 5083.9	8 -		\land	7	29-38-50/5"				
	Boring Terminated at 76.42 Feet	1								
	xploration and resting ribecaules for a description of nera and laboratory	/ater Lev				5			Drill Rig CME 75	
		o free wa	ater ob	serve	ed					
See S	upporting Information for explanation of symbols and abbreviations.								Hammer Type Automatic	e
									Driller	
Notes Elevat		dvancen ollow Ste			d				Davis	
2.000									Boring Starte	ed
						cuttings upon comp	letion.		01-26-2023	
		Abandonment Method Boring backfilled with auger cuttings upon completion.							Boring Comp 01-26-2023	reced

	Location: See Exploration Plan								Atterberg	
Graphic Log		Ft.)	Water Level Observations	Sample Type	Recovery (In.)	est Its	Water Content (%)	Dry Unit Weight (pcf)	Limits	s int
phic	Latitude: 40.5366° Longitude: -112.0676°	Depth (Ft.)	ter Le ervat	Jple	very	Field Test Results	Vate tent	ry U ght		Percent Fines
Gra		Dep	Wat Obs	San	keco	Eie R	Con	Vei Vei	LL-PL-PI	٩
$\frac{1}{2}$	Depth (Ft.) Elevation.: 5152.792 (Ft.				<u> </u>					
	0.5 TOPSOIL 5152. SILTY CLAY WITH SAND (CL-ML), tan, stiff to very stiff,	.29								
	oxidation stains									
		-								
		-								
		-								
		5-								
				IX	7	3-5-6 N=11	11.1			
				\vdash						
		-								
		-								
	- cementation	10-								
	concretedon	-			14	8-14-15 PP = 3.0 tsf	12.9			
						PP = 3.0 tsi				
	12.5 5140. SILTY SAND (SM), trace gravel, tan to brown, medium dense.	.29								
	SILTY SAND (SM), trace gravel, tan to brown, medium dense, oxidation stains	-								
		-								
		15-				F 0 10				
				X	16	5-8-12 N=20	7.8			
				r `						
	18.5 5134. CLAYEY GRAVEL WITH SAND (GC), tan to brown, dense to	.29								
	very dense, oxidation stains, cobbles	-								
		20-		K 7	-	13-27-35	1			
•		-		X	12	N=62				
		-					1			
0										
0										
	- trace clay, cementation, cobbles	25-			10	19-22-15			25 47 0	
		-		\land	10	N=37	7.1		25-17-8	31
		-								
0	- absence of clay	-		\bowtie	8	46-50/3"	3.2			
	30.0 5122.	79 20								
See Ex	ploration and Testing Procedures for a description of field and laboratory	Water Le	vel Ob	serv	ations	5			Drill Rig	
proced	lures used and additional data (If any).	No free w							CME 75	
See Su	upporting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	e
									Driller	
Notes		Advancer Hollow Ste			bd				Davis	
Elevat	ion Reference: Elevations were provided by others.								Logged by VP	
		Abandoni	nent l	Neth	bo				Boring Starto 01-31-2023	ed
						cuttings upon com	pletion.		Boring Comp	leted
									01-31-2023	

	Location: See Exploration Plan			0	<u>.</u>			0	Atterberg	
c Log	Latitude: 40.5366° Longitude: -112.0676°	E.	evel	Type	y (In	lest lts	er t (%	Jnit (pcf	Limits	ss t
Graphic Log		Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
	Depth (Ft.) Elevation.: 5152.792 (Ft. LEAN CLAY WITH SAND (CL), trace gravel, tannish brown,	.)	-							
	oxidation stains, pinholes		-		20		28.6		38-18-20	80
	32.3 5120	.54	_							
	SILT WITH SAND (ML), tannish brown, hard		_		10					
			_		19	12-27-48-70/3" PP = 3.5 tsf	24.5		NP	73
		35	_							
	- absence of pinholes and gravel			X	14	16-29-36 N=65	19.8			
			_	\square						
			_							
0	38.5 5114 CLAYEY GRAVEL WITH SAND (GC), brown, medium dense to	.29								
	very dense, oxidation stains	10								
		40								
					22	1-6-10-15 PP = 3.0 tsf	24.9	86		
20										
	- cobbles, white mineralization crystals	45			0					
•			-		18	45-24-21-28	11.1	98		
			-							
•	48.5 5104	.29	-							
	LEAN CLAY WITH SAND (CL) , trace gravel, brown, very stiff, oxidation stains		_							
		50	_							
			_		20	4-12-23-33	11.4	104	27-15-12	73
			_							
	53.5 5099	20	_							
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), trace clay, brown, very dense, oxidation stains, cementation,	.25	_							
	cobbles	55	_		2	70/4"				
			_		_3_					
0			_							
[
• •		60								
See E	ploration and Testing Procedures for a description of field and laboratory	Water Le	vel O	oserv	ation	5			Drill Rig	
	ures used and additional data (If any).	No free w	ater o	oserve	ed				CME 75 Hammer Typ	
									Automatic	
Notes		Advance	ment	Metho	bd				Driller Davis	
		Hollow St							Logged by VP	
									Boring Start	ed
		Abandon Boring ba				cuttings upon comp	letion.		01-31-2023 Boring Comp	leted
									01-31-2023	

									Atterberg	
Graphic Log	Location: See Exploration Plan	í.)	Water Level Observations	Sample Type	(In.)	est	Water Content (%)	Dry Unit Weight (pcf)	Limits	۲.
hic	Latitude: 40.5366° Longitude: -112.0676°	h (F	er Le	ole T	ery	d Te ssult	/ate ent	y Ur ht (Percent Fines
årap		Depth (Ft.)	Vate	amp	Recovery	Field Test Results	onte	/eig	LL-PL-PI	ЪР
	Depth (Ft.) Elevation.: 5152.792 (Ft.)		-0	0	Re		0	>		
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM),				0	70/5"				
•	trace clay, brown, very dense, oxidation stains, cementation, cobbles (continued)	-								
		-	_							
° 崎										
	63.5 5089.29 SANDY SILTY CLAY WITH GRAVEL (CL-ML), dark brown, hard,	9								
	cementation	-								
		65-								
		_			21	10-42-29-30	25.4	94		
						PP = 2.5 tsf		• •		
2		-								
	68.5 5084.29	9 -								
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM) , trace clay, brown to gray, very dense, oxidation stains, white	- 1	-							
	mineralization crystals	70-								
		/0-		\mathbb{N}	14	31-46-50/5"	6.5			
		-		\square		51 40 50/5	0.5			
		-								
• •		-								
		-								
		75-								
	76.3 5076.4	6 -	-	X	8	24-42-50/4"	6.1			
	Boring Terminated at 76.33 Feet									
			1							
			1							
1										
1										
See E		ater Lev				5			Drill Rig	
	Jures used and additional data (If any). No	o free wa	iter ob	serve	ed				CME 75	
									Hammer Typ Automatic	e
									Driller	
Notes	H	dvancen ollow Ste			bd				Davis	
Eleva	ion Reference: Elevations were provided by others.								Logged by VP	
									Boring Starte	ed
		bandonr oring bac				cuttings upon comp	oletion.		01-31-2023	
									Boring Comp 01-31-2023	leted

	Location: See Exploration Plan					$\widehat{}$			_	Atterberg	
Graphic Log			 	Water Level Observations	Sample Type	Recovery (In.)	est ts	Water Content (%)	Dry Unit Weight (pcf)	Limits	۳.
ohic	Latitude: 40.5365° Longitude: -112.0675°		Depth (Ft.)	er Le trvati	ple	/ery	Field Test Results	/ate ent	y Ur Jht (Percent Fines
Grap			Dept	Vate Obse	Sam	eco/	Fie Re	Cont	Veig	LL-PL-PI	Per
	Depth (Ft.) Elevation.: 5148.0271 (Ft			-0		Å					
<u></u>	0.5 TOPSOIL 5147	7.53			<u>_</u> 000						
	SILTY CLAY WITH SAND (CL-ML), tan, stiff to hard		_		M.						
			_								
			_								
			_								
			5 —			_	3-6-9				
			_		\wedge	8	N=15				
			_								
	8.0 5140	0.03	_								
	<u>SILT (ML)</u> , tan, stiff to hard, oxidation stains		_								
			10-		\square	8	7-14-18				
			-		\square	0	N=32				
			_								
			_								
			_								
			15-								
	- with sand		15-			16	23-28-40	12.1	82		
			-			10	23-28-40	12.1	02		
			-								
			_								
			_								
		-	20-								
		4	20-								
			_		X	18	28-40-49-53	9.8		27-22-5	86
	22.5 5125	5.53	-								
	SANDY LEAN CLAY (CL) , tan, very stiff to hard, oxidation stains		_		\mathbb{N}	10	12-22-29	9.4			
			_		\land		N=51				
		-	25-								
		2	25		\mathbb{N}	10	10-15-20	8.9		25-17-8	61
					$\langle \cdot \rangle$	-	N=35				
			-								
	- cementation		-			13	8-13-19	15.9			
	29.0 5119	9.03	_								
• 🔥			30								
See E	xploration and Testing Procedures for a description of field and laboratory	Water					i			Drill Rig	
	dures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.	No fre	e wat	er ob	serve	d				CME 75	
500 5										Hammer Typ Automatic	e
										Driller Davis	
Note: Elevat	; ion Reference: Elevations were provided by others.	Advan Hollow				d				Logged by	
										VP	
							cuttings upon com	pletion.		Boring Starte 01-31-2023	
	Boring backfilled with auger cuttings upon completion.									Boring Comp 02-01-2023	leted

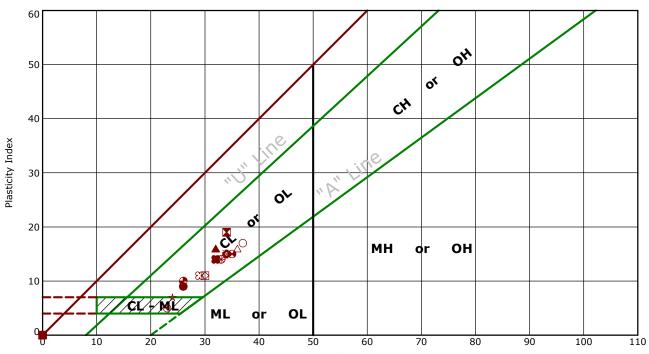
								1		A 1	
Б	Location: See Exploration Plan			<u>.</u> ຮ	be	Recovery (In.)	LT.	(%	(j	Atterberg Limits	
Graphic Log	Latitude: 40.5365° Longitude: -112.0675°	Depth (Ft.)		vvater Level Observations	Sample Type	۲ С	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
phi		Ę	1	er L	ble	ver	est.	Vat	ght Bht		Fine
gra		Gen		Dbse	San	SC SC	Fie	_ no	Vei	LL-PL-PI	٩.
	Depth (Ft.) Elevation.: 5148.0271 (Ft					8			-		
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM),				\setminus		5-13-18				
	with clay, brown to gray, dense to very dense, oxidation stains, white crystal mineralization (continued)		_		Å	15	N=31	8.8			
0											
0			_								
			_								
		35	5-				14-23-41				
			_		Х	14	N=64	6.4			
0											
			_								
0			_								
6		40	0-		\backslash		77 74 4F				
			_		Х	12	22-34-45 N=79	6.5			
	42.5 5105	5.53									
	SILTY CLAY WITH SAND (CL-ML), tan, hard, cementation		_								
		45	5-		X	4	70/5"	5.4			
			_								
			_								
	48.5 5099	53	_								
	SUTY CLAY (CL-ML), trace sand, tan, hard										
		50	0		X	4	70/4"	4.6			
			_								
	52.5 5095	5.53									
0 0	GRAVELLY SILTY CLAY WITH SAND (CL-ML), tan, hard		_								
6											
020											
B		55	5-			_4	70/4"	5.3			
O			_								
000											
2Ko	58.5 5089	9.53	-								
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM),		_								
	trace clay, brown to gray, very dense, oxidation stains										
Sec.5	valenation and Testing Drocodures for a description of field and laboration	Water L	evel	Ob	serv	ations				Deill Die	
	xploration and Testing Procedures for a description of field and laboratory dures used and additional data (If any).	No free								Drill Rig CME 75	
See <mark>S</mark>	upporting Information for explanation of symbols and abbreviations.									Hammer Typ	e
										Automatic	
Notes		Advert	ame	nt 14	oth -	d				Driller Davis	
	ion Reference: Elevations were provided by others.	Advanc Hollow S				u				Logged by	
210 VOI										VP	
		A								Boring Starte 01-31-2023	ed
		Abando Boring b					cuttings upon com	pletion.			late 1
										Boring Comp 02-01-2023	neted

Log	Location: See Exploration Plan		·t.)	vel ons	ype	Recovery (In.)	est :s	r (%)	nit pcf)	Atterberg Limits	ب ب
Graphic Log	Latitude: 40.5365° Longitude: -112.0675°		Depth (Ft.)	Water Level Observations	Sample Type	very	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
			Dep	Wat Obs(San	Reco	Не В	Con	Wei	LL-PL-PI	₫
	Depth (Ft.) Elevation.: 5148.0271 POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM),	(Ft.)			\bigvee	5	30-50/5"	4.6			
	trace clay, brown to gray, very dense, oxidation stains (continued)				\cap		30 30/3	ч.0			
			-								
			65-		\times	3,	50/4"				
			_								
	67.0 5 SANDY LEAN CLAY (CL), trace gravel, brown, hard, oxidation	081.0	3								
	stains		_								
	69.5 5	078.5	3 –		X	24	11-15-28-70/3"	16.4		31-14-17	53
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), trace clay, brown, dense to very dense, oxidation stains,		70-								
	cobbles										
\cdot			_								
			_								
			_								
			75-			8	41-70/3"	8.4			
						0	41-70/3	0.4			
			_								
			_			0	50-70/3"				
	78.8 5 Auger Refusal at 78.75 Feet	069.2	8			0	50-70/5				
See Ex	ploration and Testing Procedures for a description of field and laboratory ures used and additional data (If any).		/ater Lev lo free wat				5			Drill Rig CME 75	
	pporting Information for explanation of symbols and abbreviations.	N	o nee wal		Serve	.u				Hammer Typ	e
										Automatic Driller	
Notes			dvancem ollow Sten			bd				Davis	
Elevat	on Reference: Elevations were provided by others.			. 3						Logged by VP	
			bandonm				outtings upon	lotion		Boring Starte 01-31-2023	ed
		B	oning back	med	with	auger	cuttings upon comp	netion.		Boring Comp 02-01-2023	leted

			-						A.L	
Бo	Location: See Exploration Plan		le su	be	Recovery (In.)		(%	Ç,	Atterberg Limits	
Graphic Log	Latitude: 40.5365° Longitude: -112.0667°	Depth (Ft.)	Water Level Observations	Sample Type	ry (Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
aph		pth	ater serv	dm	ove	ield Res	Na	rZ	LL-PL-PI	Perc
			Ş₿	s	Rec	LL LL	ပိ	[™]		
XXXX	Depth (Ft.) Elevation.: 5160.0337 (Ft.	.)								
	FILL - SILTY CLAYEY SAND WITH GRAVEL (SC-SM), light brown, medium dense			m						
		5-								
		5		\mathbb{N}	14	6-13-9				
				Ŵ	14	N=22				
				ſ						
	8.0 5152	0.2								
	FILL - SILTY SAND WITH GRAVEL (SM), light brown, dense to	.03								
	very dense									
		10-		$\overline{\mathbf{X}}$		20 21 20		1		
			_	IX	11	20-31-29 N=60	5.2		19-18-1	22
				\vdash				-		
		15-					-			
				IX	8	7-18-12 N=30				
				\square		11-50	-			
	17.5 5142	.53								
	SANDY SILT (ML), trace gravel, light brown, stiff to hard									
		20-						-		
				Y	8	4-5-6 N=11	9.7			
				$ \rangle$		N=11				
			_							
		25-						1		
				\mathbb{N}	10	7-13-19	16.2			
				$ \rangle$		N=32				
			_							
]							
		30								
See F	ploration and Testing Procedures for a description of field and laboratory	Water Le	vel Ob	serv	ations	5			Drill Rig	
proced	lures used and additional data (If any).	No free w							CME 75	
See St	upporting Information for explanation of symbols and abbreviations.								Hammer Typ	e
									Automatic	
Notes		Advance	nont •	10+-	d				Driller Davis	
		Hollow Ste			a				Logged by	
Licvat									VP	
									Boring Start	ed
		Abandon Boring bac				cuttings upon com	pletion.		01-26-2023	
		-			-				Boring Comp 01-30-2023	leted

	Location: See Exploration Plan								Atterberg	
Log	·	Ŀ.)	evel	Type	(In	est ts	er (%)	nit (pcf)	Limits	ی بر
Graphic Log	Latitude: 40.5365° Longitude: -112.0667°	Depth (Ft.)	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
6	Depth (Ft.) Elevation.: 5160.0337 (Ft		>0	S	Re		Ŭ	8		
	SANDY SILT (ML), trace gravel, light brown, stiff to hard (continued)	-		X	14	7-15-19 N=34	16.7			
		-								
		-	-				10.3		NP	60
		35-		X	12	5-9-16 N=25	15.5			
	39.5 5120	.53 -		X	12	5-9-12 N=21	15.9	-		
	LEAN CLAY WITH SAND (CL), light brown, stiff to very stiff	40-		\bigtriangledown	15	7-11-15	16.8	-	28-19-9	82
		-		\square		N=26		-		
		-								
		45-						-		
		-		X	20	4-6-7 N=13	24.1	-		
		-								
	48.5 5111 LEAN CLAY (CL), trace sand, grayish brown, medium stiff, trace pinholes, oxidation stains									
		50-	-		24	2-3-4 N=7	38.2		40-21-19	94
		-								
	53.5 5106 POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), trace clay, brown, dense, oxidation stains									
		55-		\bigvee	18	15-16-33 N=49	8.7	-		
		-				11-43		-		
		-								
• • •		60	1							
proced	ploration and Testing Procedures for a description of field and laboratory ures used and additional data (If any).	Water Le				;			Drill Rig CME 75	
See St	upporting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	e
Notes Elevat		Advancer Hollow Ste			bd				Driller Davis Logged by	
		Abandonı							VP Boring Starte 01-26-2023	ed
						cuttings upon com	pletion.		Boring Comp 01-30-2023	leted

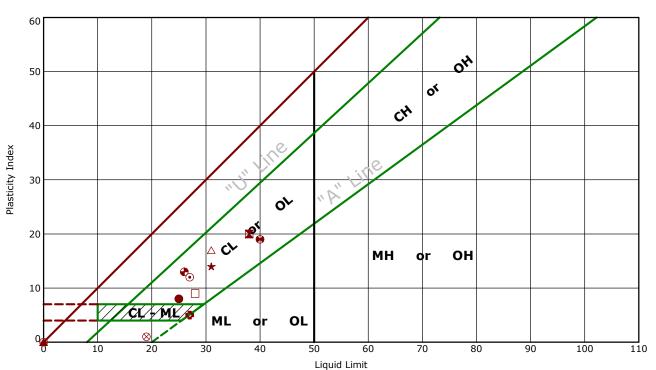
	Location: See Exploration Plan								Atterberg	
Graphic Log		í.	Water Level Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Limits	ي ۲
ohic	Latitude: 40.5365° Longitude: -112.0667°	L L	er Le	ble	/ery	L PIQ T	/ate ent	y U jht (Percent Fines
Grap		Depth (Ft.)	Nate	Sam	sco	Fie	Cont v	Veig	LL-PL-PI	Ч, щ
Ĭ	Depth (Ft.) Elevation.: 5160.0337 (Ft.		- 0		Å			_		
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM) , trace clay, brown, dense, oxidation stains (continued)			\mathbb{N}	10	30-29-16	6.9			
	- absence of clay		-	\square	10	N=45	0.9			
	62.5 5097	.53	_							
	CLAYEY SAND WITH GRAVEL (SC), brown, very dense,		_							
	oxidation stains, cobbles									
0										
3		65	-		18	11-52-70/3"	10.8	99	26-13-13	46
6			_		10	11-32-70/3	10.0	99	20-13-13	40
2	67.5 5092	52	_							
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM),	.55	_							
	trace clay, grayish brown, very dense, oxidation stains, cementation									
• O		70	-		6	48-50/3"	6.2			
			_				0.2			
• 🕒 •			_							
	73.5 5086 SILTY CLAYEY SAND (SC-SM), trace gravel, tan, very dense,	.53								
	trace cementations		-							
		75	-	×	4	70/4"	4.2			
			_							
			_							
	78.5 5081	.53								
	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM) , trace clay, brown, very dense, oxidation stains, cobbles		-							
0		80	_		6	70/5"				
			_				1			
0										
	83.0 5077	03								
0	SILTY SAND WITH GRAVEL (SM), brown, medium dense,	.05	-							
	cobbles		_							
0		85	_							
S	86.0 5074	.03			20	24-16-21	22.4	99		
	CLAYEY GRAVEL WITH SAND (GC), brown, dense					PP = 3.0				
20			1							
	88.5 5071	.53	1							
0	SILTY SAND WITH GRAVEL (SM), brown, very dense, cobbles		-							
See E	xploration and Testing Procedures for a description of field and laboratory	Water Le				5			Drill Rig CME 75	
	dures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.	No free w	ater o	userv	ea				Hammer Typ	e
									Automatic	-
									Driller Davis	
Notes Elevat		Advance Hollow St			oa				Logged by	
									VP	
		Abandon							Boring Start 01-26-2023	ed
		Boring ba	ckfilled	1 with	auger	cuttings upon com	pletion.		Boring Comp	leted
									01-30-2023	



60'	Location: See Exploration Plan		e la	su	/be	(In.)	st	(%	t ocf)	Atterberg Limits	
Graphic Log	Latitude: 40.5365° Longitude: -112.0667°	Depth (Ft.)	rLev	Observations	Sample Type	Recovery (In.)	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
Grap		Dept	Wate	Dbsel	Samp	ecov	Fiel Re	Conte	Veig	LL-PL-PI	Ре
0	Depth (Ft.) Elevation.: 5160.0337 (Ft 90.4 5065	t.)					70/5"				
	Auger Refusal at 90.42 Feet	<u>4.61</u>				5	/0/5				
See E	ploration and Testing Procedures for a description of field and laboratory	Water L					5			Drill Rig	
	lures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.	No free	water	obse	erved	ב				CME 75 Hammer Typ	e
										Automatic	
Notes		Advanc	emen	nt Me	tho	d				Driller Davis	
	ion Reference: Elevations were provided by others.	Hollow Stom Augor									
		Boring Started					ed				
		Abando Boring b	ackfill	nt Me led w	ith a	d auger	cuttings upon comp	oletion.			
										Boring Comp 01-30-2023	recea

Atterberg Limit Results

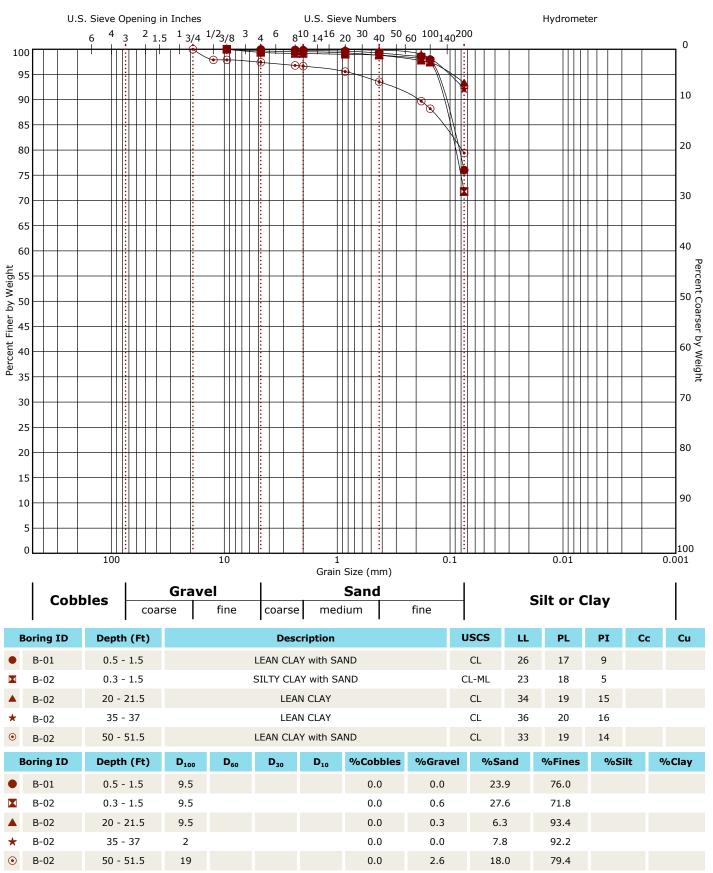
ASTM D4318


Liquid Limit

	Boring ID	Depth (Ft)	ш	PL	PI	Fines	USCS	Description
•	B-01	0.5 - 1.5	26	17	9	76.0	CL	LEAN CLAY with SAND
	B-01	22.5 - 24	34	15	19	69.5	CL	SANDY LEAN CLAY
	B-01	27.5 - 29	32	16	16	47.2	SC	CLAYEY SAND
*	B-01	45 - 46.5	NP	NP	NP	84.6	ML	SILT with SAND
۲	B-02	0.3 - 1.5	23	18	5	71.8	CL-ML	SILTY CLAY with SAND
۰	B-02	20 - 21.5	34	19	15	93.4	CL	LEAN CLAY
0	B-02	25 - 27	37	20	17	93.0	CL	LEAN CLAY
Δ	B-02	35 - 37	36	20	16	92.2	CL	LEAN CLAY
8	B-02	50 - 51.5	33	19	14	79.4	CL	LEAN CLAY with SAND
Ð	B-03	20 - 22	33	19	14	87.7	CL	LEAN CLAY
	B-03	22.5 - 24	30	19	11	90.2	CL	LEAN CLAY
θ	B-03	30 - 31.5	35	20	15	83.0	CL	LEAN CLAY with SAND
•	B-03	55 - 56.5	26	16	10	32.7	SC	CLAYEY SAND with GRAVEL
*	B-04	0.3 - 1	24	17	7	47.6	SC-SM	SILTY, CLAYEY SAND with GRAVEL
ន	B-04	32.5 - 34	29	18	11	79.0	CL	LEAN CLAY with SAND
	B-04	45 - 46.5	NP	NP	NP	76.0	ML	SILT with SAND
٠	B-04	60 - 60.9	NP	NP	NP	39.8	SM	SILTY SAND with GRAVEL
\$	B-05	32.5 - 34	30	19	11	91.7	CL	LEAN CLAY
×	B-05	45 - 46.5	34	19	15	88.6	CL	LEAN CLAY
	B-05	60 - 61.5	32	18	14	69.6	CL	SANDY LEAN CLAY

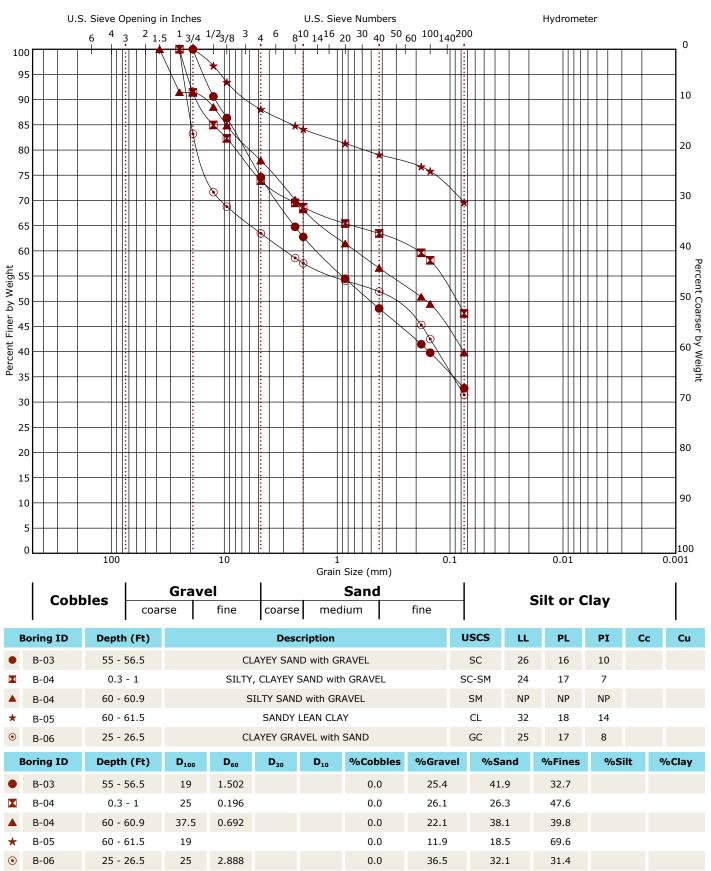
Atterberg Limit Results

ASTM D4318



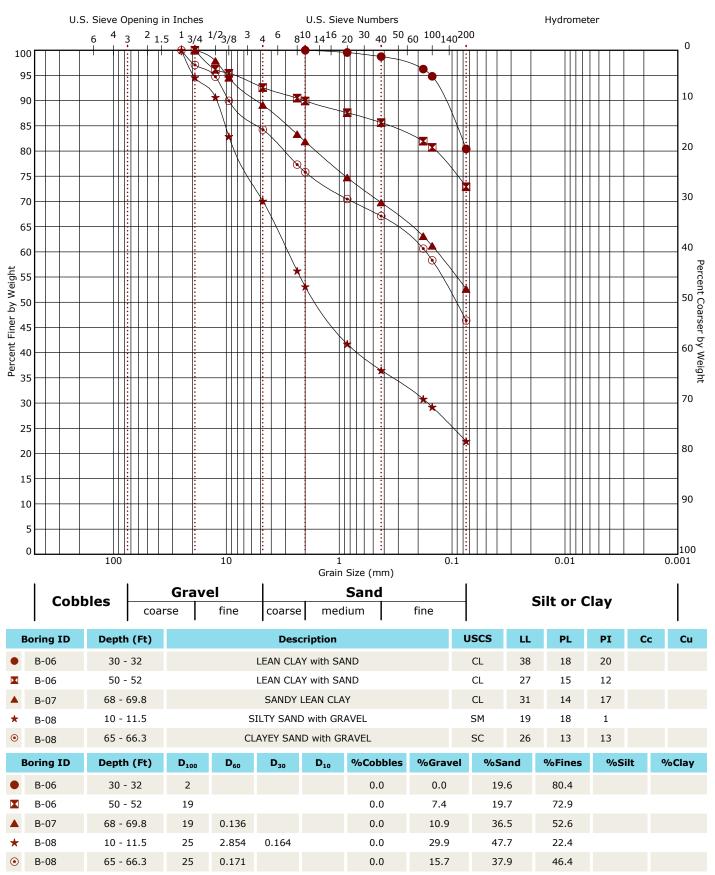
	Boring ID	Depth (Ft)	ш	PL	PI	Fines	USCS	Description
٠	B-06	25 - 26.5	25	17	8	31.4	GC	CLAYEY GRAVEL with SAND
	B-06	30 - 32	38	18	20	80.4	CL	LEAN CLAY with SAND
	B-06	32.5 - 34.3	NP	NP	NP	73.1	ML	SILT with SAND
*	B-06	45.3 - 47.3	31	17	14	15.6	SC	CLAYEY SAND
۲	B-06	50 - 52	27	15	12	72.9	CL	LEAN CLAY with SAND
۰	B-07	20 - 22	27	22	5	85.5	ML	SILT
0	B-07	25 - 26.5	25	17	8	60.9	CL	SANDY LEAN CLAY
Δ	B-07	68 - 69.8	31	14	17	52.6	CL	SANDY LEAN CLAY
⊗	B-08	10 - 11.5	19	18	1	22.4	SM	SILTY SAND with GRAVEL
⊕	B-08	32.5 - 34.5	NP	NP	NP	60.0	ML	SANDY SILT
	B-08	40 - 41.5	28	19	9	82.3	CL	LEAN CLAY with SAND
θ	B-08	50 - 51.5	40	21	19	93.6	CL	LEAN CLAY
•	B-08	65 - 66.3	26	13	13	46.4	SC	CLAYEY SAND with GRAVEL

Grain Size Distribution


ASTM D422 / ASTM C136

6949 S High Tech Dr Ste 100 Midvale, UT

Grain Size Distribution


ASTM D422 / ASTM C136

Grain Size Distribution

ASTM D422 / ASTM C136

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/6/2023 By: EH

Boring No.: B-02 Sample:

Depth: 20.0-21.5'

Sample Description: Light brown silt

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0004

0.0011

0.0019

0.0047

0.0079

0.0067

0.0099

0.0168

0.0312

0.0650

0.1155

0.1145

0.1057

0.0953

0.0839

Stress (psf)

Seating

125

250

500

1000

2000

2000

4000

8000

16000

32000

64000

32000

8000

2000

500

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9160

0.9156

0.9149

0.9141

0.9113

0.9081

0.9093

0.9061

0.8992

0.8848

0.8510

0.8005

0.8015

0.8103

0.8207

0.8321

1-D ϵ_{v} (%)

0.00

0.04

0.12

0.20

0.51

0.86

0.73

1.08

1.84

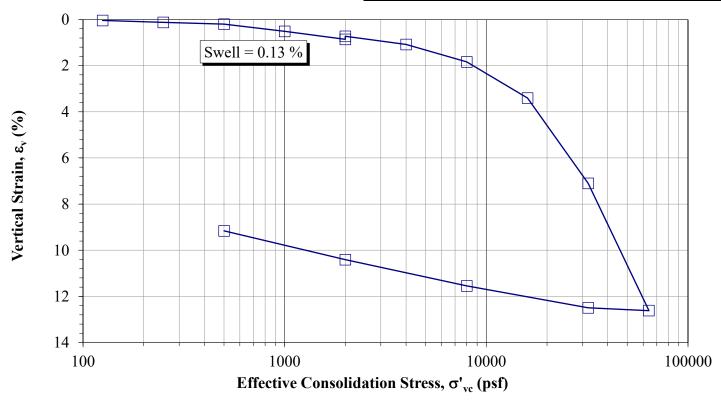
3.41

7.10

12.61

12.50

11.54


10.41

9.16

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Swell (%)	0.13	
Swell stress (psf)	2000	
Water type used for	or inundation	n Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.916	0.832
Sample diameter, D (in.)	2.421	2.421
Wt. rings + wet soil (g)	159.00	166.66
Wt. rings/tare (g)	42.18	42.18
Moist unit wt., γ_m (pcf)	105.5	123.80
Wet soil + tare (g)	330.10	248.15
Dry soil + tare (g)	297.18	222.12
Tare (g)	121.76	124.10
Water content, w (%)	18.8	26.6
Dry unit wt., γ_d (pcf)	88.9	97.8
Saturation	0.57	0.99

*Note: C_v, C_c, C_r , and σ_p ' to be determined

by Geotechnical Engineer.

Entered: ______

e

0.8968

0.8960

0.8944

0.8929

0.8871

0.8805

0.8829

0.8763

0.8619

0.8322

0.7621

0.6575

0.6598

0.6778

0.6994

0.7230

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/6/2023 By: EH

Boring No.: B-02

Depth: 35.0-37.0'

Sample Description: Brown clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0004

0.0007

0.0038

0.0076

0.0124

0.0144

0.0229

0.0362

0.0559

0.0932

0.1442

0.1418

0.1351

0.1267

0.1168

Stress (psf)

Seating 125

250

500

1000

2000

2000

4000

8000

16000

32000

64000

32000

8000

2000

500

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9240

0.9236

0.9233

0.9202

0.9164

0.9116

0.9096

0.9011

0.8878

0.8681

0.8308

0.7798

0.7822

0.7889

0.7973

0.8072

1-D ϵ_{v} (%)

0.00

0.04

0.07

0.41

0.83

1.35

1.56

2.48

3.92

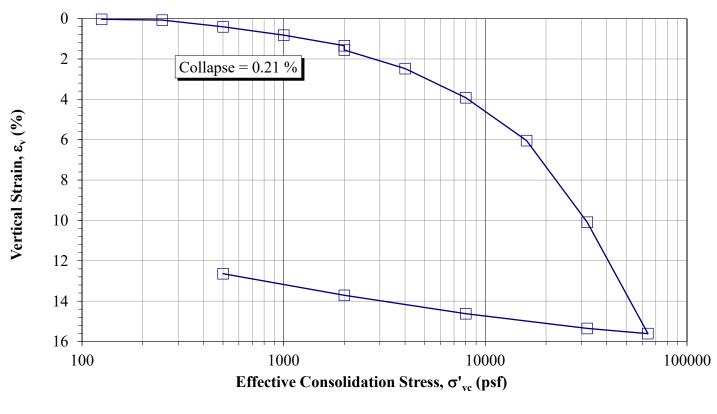
6.05

10.09

15.61

15.35

14.62


13.71

12.64

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Collapse (%)	0.21	
Collapse stress (psf)	2000	
Water type used for	or inundation	n Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.924	0.807
Sample diameter, D (in.)	2.422	2.422
Wt. rings + wet soil (g)	165.60	159.88
Wt. rings/tare (g)	44.10	44.10
Moist unit wt., γ_m (pcf)	108.7	118.60
Wet soil + tare (g)	633.57	269.83
Dry soil + tare (g)	500.99	243.48
Tare (g)	126.85	152.81
Water content, w (%)	35.4	29.1
Dry unit wt., γ_d (pcf)	80.3	91.9
Saturation	0.87	0.94

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

1.0996

1.0988

1.0980

1.0910

1.0822

1.0713

1.0669

1.0475

1.0172

0.9726

0.8878

0.7719

0.7774

0.7926

0.8117

0.8342

Sample:

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/7/2023 By: EH

Boring No.: B-03 Sample:

Depth: 20.0-22.0'

Sample Description: Brown clay

Engineering Classification: Not requested

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9240

0.9240

0.9238

0.9230

0.9214

0.9206

0.9198

0.9152

0.9049

0.8847

0.8407

0.7872

0.7899

0.7965

0.8069

0.8175

1-D ϵ_{v} (%)

0.00

0.00

0.02

0.10

0.28

0.37

0.45

0.95

2.06

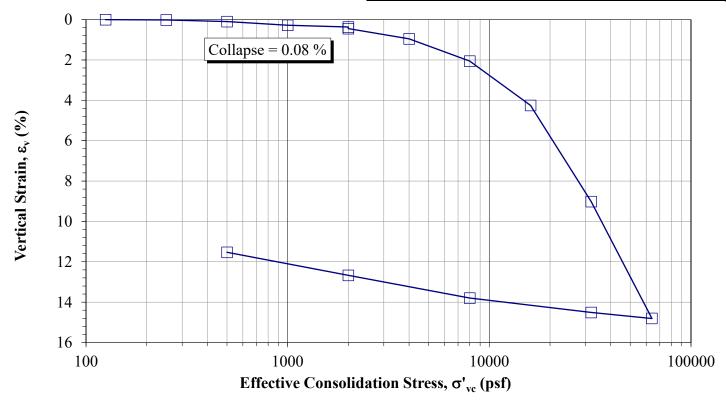
4.26

9.01

14.81

14.51

13.80


12.67

11.53

Test method:	А		Stress (psf)	Dial (in.)
Inundation stress (psf), timing:	2000	Beginning	Seating	0.0000
Specific gravity, G _s	2.70	Assumed	125	0.0000
Collapse (%)	0.08		250	0.0002
Collapse stress (psf)	2000		500	0.0010
Water type used for	or inundation	n Tap	1000	0.0026
	Initial (o)	Final (f)	2000	0.0034
Sample height, H (in.)	0.924	0.818	2000	0.0042
Sample diameter, D (in.)	2.422	2.422	4000	0.0088
Wt. rings + wet soil (g)	164.70	168.45	8000	0.0191
Wt. rings/tare (g)	44.10	44.10	16000	0.0393
Moist unit wt., γ_m (pcf)	107.9	125.78	32000	0.0833
Wet soil + tare (g)	628.93	242.40	64000	0.1368
Dry soil + tare (g)	532.41	216.22	32000	0.1341
Tare (g)	126.88	121.55	8000	0.1275
Water content, w (%)	23.8	27.7	2000	0.1171
Dry unit wt., γ_d (pcf)	87.2	98.5	500	0.1065
Saturation	0.69	1.00		
	Inundation stress (psf), timing: Specific gravity, G_s Collapse (%) Collapse stress (psf) Water type used for Sample height, H (in.) Sample diameter, D (in.) Wt. rings + wet soil (g) Wt. rings/tare (g) Moist unit wt., γ_m (pcf) Wet soil + tare (g) Dry soil + tare (g) Tare (g) Water content, w (%) Dry unit wt., γ_d (pcf)	Inundation stress (psf), timing: 2000 Specific gravity, G_s 2.70 Collapse (%) 0.08 Collapse stress (psf) 2000 Water type used for inundation Initial (o) Sample height, H (in.) 0.924 Sample diameter, D (in.) 2.422 Wt. rings + wet soil (g) 164.70 Wt. rings/tare (g) 44.10 Moist unit wt., γ_m (pcf) 107.9 Wet soil + tare (g) 628.93 Dry soil + tare (g) 532.41 Tare (g) 126.88 Water content, w (%) 23.8 Dry unit wt., γ_d (pcf) 87.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

0.9335

0.9334

0.9331

0.9315

0.9281

0.9263

0.9248

0.9151

0.8936

0.8513

0.7592

0.6473

0.6529

0.6667

0.6885

0.7107

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/8/2023 By: EH

Boring No.: B-04 Sample:

Depth: 45-46.5'

Sample Description: Brown silt

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0011

0.0037

0.0087

0.0171

0.0306

0.0493

0.0627

0.0830

0.1081

0.1343

0.1681

0.1666

0.1599

0.1502

0.1423

Stress (psf)

Seating

125

250

500

1000

2000

2000

4000

8000

16000

32000

64000

32000

8000

2000

500

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9230

0.9219

0.9193

0.9143

0.9059

0.8924

0.8737

0.8603

0.8400

0.8149

0.7887

0.7549

0.7564

0.7631

0.7728

0.7807

1-D ϵ_{v} (%)

0.00

0.12

0.40

0.94

1.85

3.31

5.34

6.79

8.99

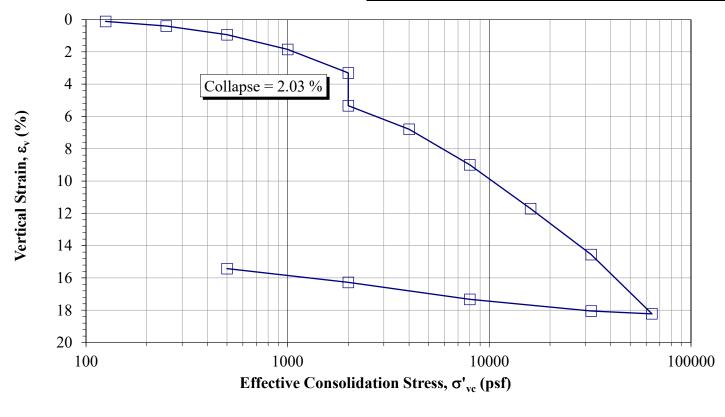
11.71

14.56

18.22

18.05

17.33


16.28

15.42

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Collapse (%)	2.03	
Collapse stress (psf)	2000	
Water type used for	or inundation	ı Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.923	0.781
Sample diameter, D (in.)	2.416	2.416
Wt. rings + wet soil (g)	142.79	157.34
Wt. rings/tare (g)	45.74	45.74
Moist unit wt., γ_m (pcf)	87.4	118.79
Wet soil + tare (g)	319.99	230.56
Dry soil + tare (g)	293.71	203.64
Tare (g)	120.82	120.73
Water content, w (%)	15.2	32.5
Dry unit wt., γ_d (pcf)	75.8	89.7
Saturation	0.34	1.00

*Note: C_v, C_c, C_r , and σ_p' to be determined

by Geotechnical Engineer.

Entered: ______

e

1.2223

1.2198

1.2133

1.2015

1.1812

1.1487

1.1037

1.0714

1.0224

0.9621

0.8989

0.8175

0.8213

0.8372

0.8606

0.8797

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

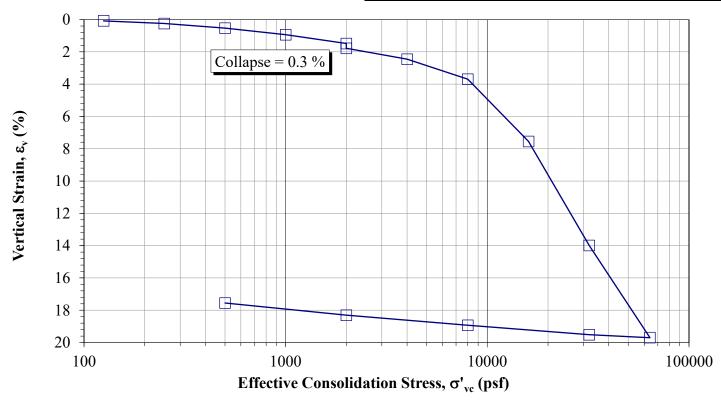
No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/7/2023 By: EH

Boring No.: B-05 Sample:

Depth: 35.0-36.5'

Sample Description: Brown silt

Engineering Classification: Not requested


Sample type: Undisturbed-trimmed from Shelby tube

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Collapse (%)	0.30	
Collapse stress (psf)	2000	
Water type used for	or inundation	n Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.917	0.756
Sample diameter, D (in.)	2.418	2.418
Wt. rings + wet soil (g)	150.91	153.46
Wt. rings/tare (g)	44.70	44.70
Moist unit wt., γ_m (pcf)	96.1	119.33
Wet soil + tare (g)	467.55	240.44
Dry soil + tare (g)	406.31	217.88
Tare (g)	129.31	127.77
Water content, w (%)	22.1	25.0
Dry unit wt., γ_d (pcf)	78.7	95.4
Saturation	0.52	0.88

Stress (psf) Dial (in.) 1-D ϵ_{v} (%) H_c (in.) e 0.0000 0.00 0.9170 1.1420 Seating 125 0.0007 0.08 0.9163 1.1403 250 0.0023 0.25 0.9147 1.1367 500 0.0049 0.53 0.9121 1.1306 1000 0.0086 0.94 0.9084 1.1218 2000 0.0136 1.48 0.9034 1.1102 2000 0.9007 0.0163 1.78 1.1038 4000 0.0225 2.46 0.8945 1.0894 8000 0.0339 3.70 0.8831 1.0628 16000 0.0692 7.55 0.8478 0.9803 32000 0.1283 13.99 0.7887 0.8423 64000 0.1806 19.69 0.7364 0.7202 32000 0.1789 19.51 0.7381 0.7241 8000 0.1736 18.93 0.7434 0.7365 2000 0.1678 18.30 0.7492 0.7500 500 0.1609 17.55 0.7561 0.7661

*Note: C_v, C_c, C_r , and σ_p ' to be determined

by Geotechnical Engineer.

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/8/2023 By: EH

Boring No.: B-06 Sample:

Depth: 30.0-32.0'

Sample Description: Brown clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0011

0.0019

0.0030

0.0039

0.0070

0.0050

0.0076

0.0156

0.0499

0.1184

0.1901

0.1872

0.1762

0.1634

0.1439

Stress (psf)

Seating 125

250

500

1000

2000

2000

4000

8000

16000

32000

64000

32000

8000

2000

500

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9240

0.9229

0.9221

0.9210

0.9201

0.9170

0.9190

0.9164

0.9084

0.8741

0.8056

0.7339

0.7368

0.7478

0.7606

0.7801

1-D ϵ_{v} (%)

0.00

0.11

0.21

0.32

0.42

0.75

0.54

0.82

1.69

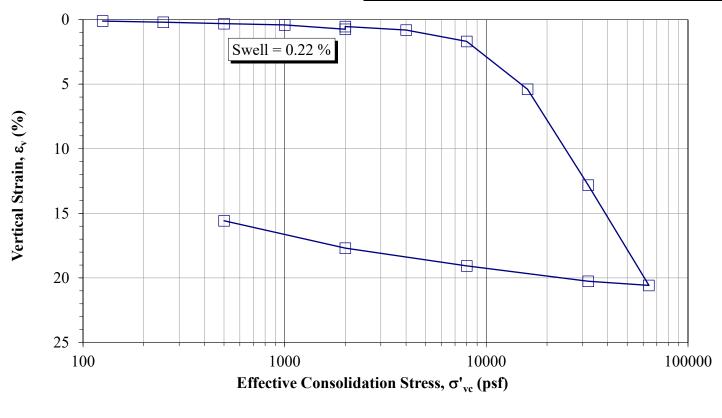
5.40

12.82

20.58

20.26

19.07


17.69

15.58

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Swell (%)	0.22	
Swell stress (psf)	2000	
Water type used for	or inundation	1 Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.924	0.780
Sample diameter, D (in.)	2.422	2.422
Wt. rings + wet soil (g)	157.71	155.59
Wt. rings/tare (g)	44.10	44.10
Moist unit wt., γ_m (pcf)	101.7	118.17
Wet soil + tare (g)	431.40	236.19
Dry soil + tare (g)	349.75	208.32
Tare (g)	126.85	126.54
Water content, w (%)	36.6	34.1
Dry unit wt., γ_d (pcf)	74.4	88.1
Saturation	0.78	1.00

*Note: C_v, C_c, C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

1.2652

1.2626

1.2605

1.2579

1.2557

1.2481

1.2530

1.2466

1.2269

1.1429

0.9748

0.7991

0.8064

0.8332

0.8645

0.9124

(In general accordance with ASTM D2435 and D4546)

Project: Terracon

No: M00385-498 (61225118) Location: Jacobs - 118th South Water Tanks Date: 3/8/2023 By: EH

Boring No.: B-07 Sample:

Depth: 27.5-29.0'

Sample Description: Brownish grey clay

Engineering Classification: Not requested

Dial (in.)

0.0000

0.0003

0.0026

0.0047

0.0087

0.0142

0.0186

0.0283

0.0448

0.0652

0.0916

0.1292

0.1268

0.1187

0.1064

0.0935

Stress (psf)

Seating

125

250

500

1000

2000

2000

4000

8000

16000

32000

64000

32000

8000

2000

500

Sample type: Undisturbed-trimmed from Shelby tube

H_c (in.)

0.9160

0.9157

0.9134

0.9113

0.9073

0.9018

0.8974

0.8877

0.8712

0.8508

0.8244

0.7868

0.7892

0.7973

0.8096

0.8225

1-D ϵ_{v} (%)

0.00

0.03

0.28

0.52

0.95

1.55

2.03

3.09

4.89

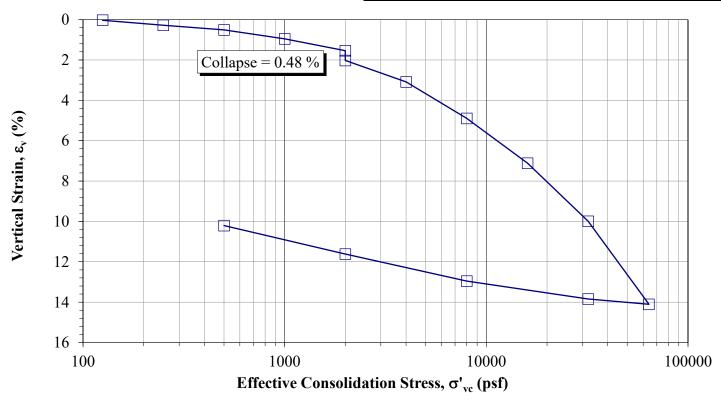
7.11

10.00

14.10

13.84

12.96


11.62

10.21

Test method:	А	
Inundation stress (psf), timing:	2000	Beginning
Specific gravity, G _s	2.70	Assumed
Collapse (%)	0.48	
Collapse stress (psf)	2000	
Water type used for	or inundation	n Tap
	Initial (o)	Final (f)
Sample height, H (in.)	0.916	0.822
Sample diameter, D (in.)	2.376	2.376
Wt. rings + wet soil (g)	189.39	212.58
Wt. rings/tare (g)	64.21	64.21
Moist unit wt., γ_m (pcf)	117.4	154.99
Wet soil + tare (g)	507.20	251.29
Dry soil + tare (g)	487.91	226.75
Tare (g)	122.19	127.70
Water content, w (%)	5.3	24.8
Dry unit wt., γ_d (pcf)	111.5	124.2
Saturation	0.28	1.00

*Note: C_v , C_c , C_r , and σ_p ' to be determined

by Geotechnical Engineer.

e

0.5112

0.5108

0.5070

0.5034

0.4968

0.4879

0.4806

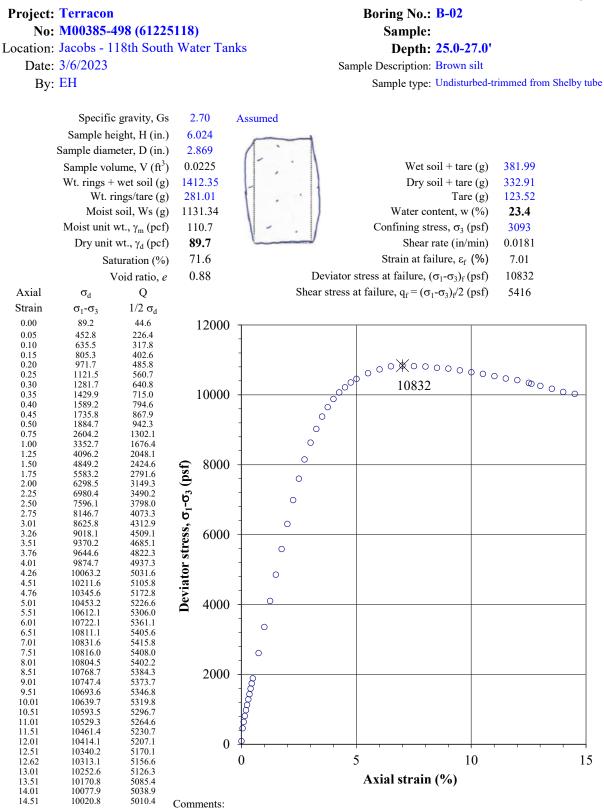
0.4646

0.4373

0.4037

0.3602

0.2981

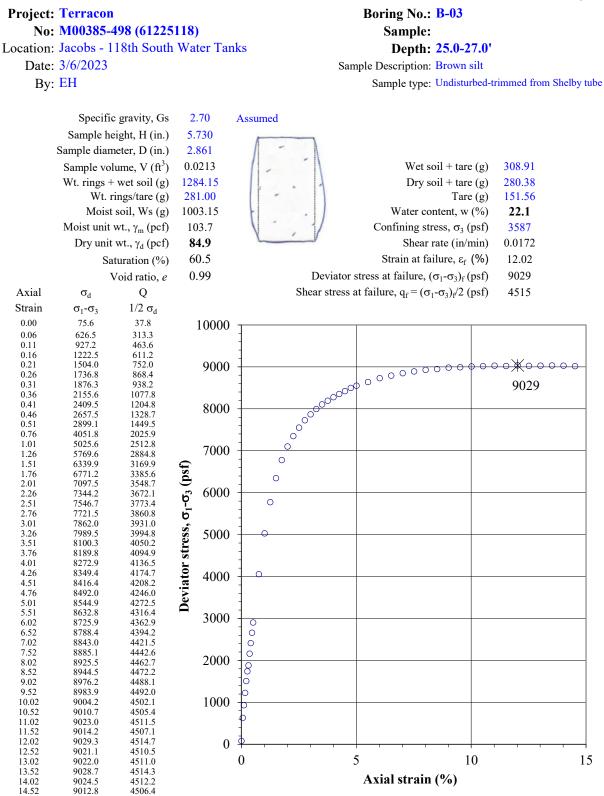

0.3020

0.3154

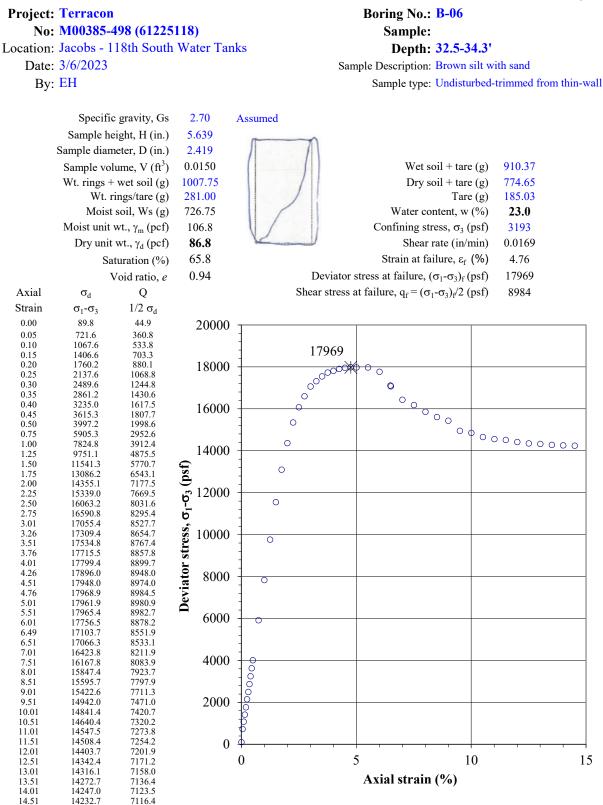
0.3357

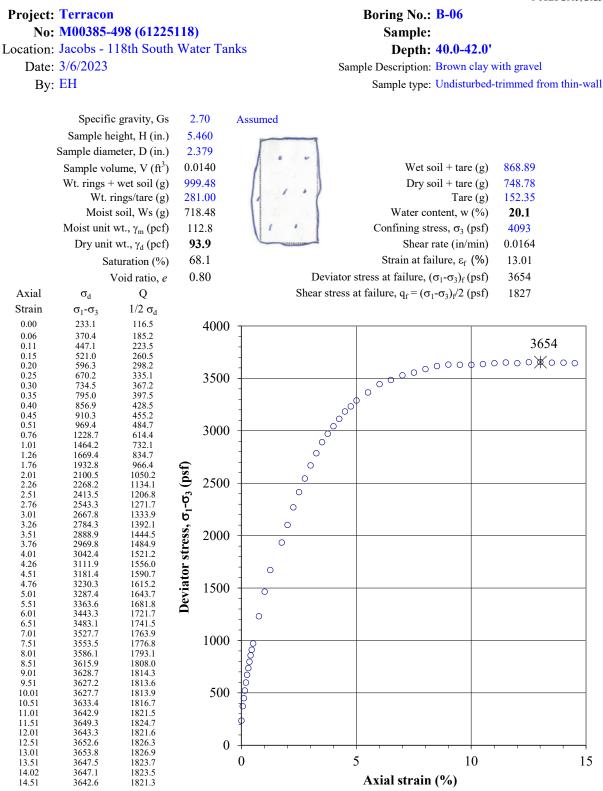
0.3570

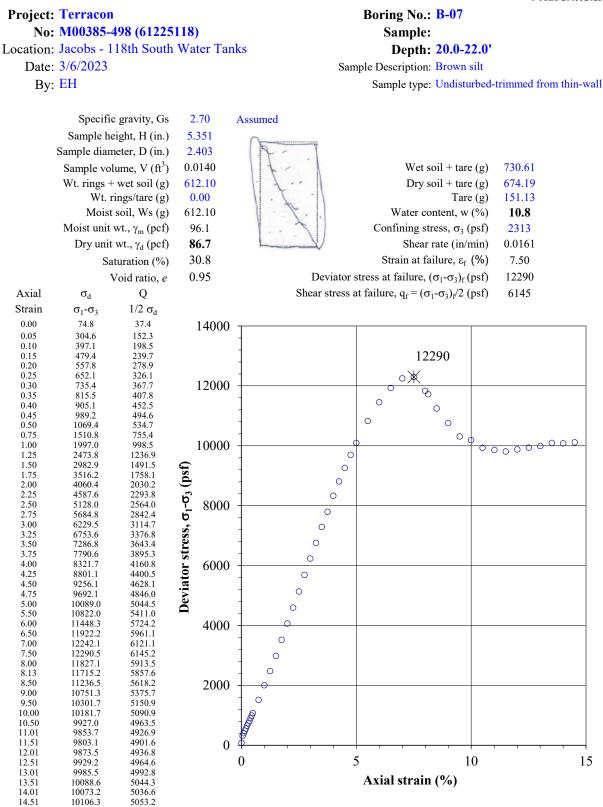
Horizontal cracks in specimen.

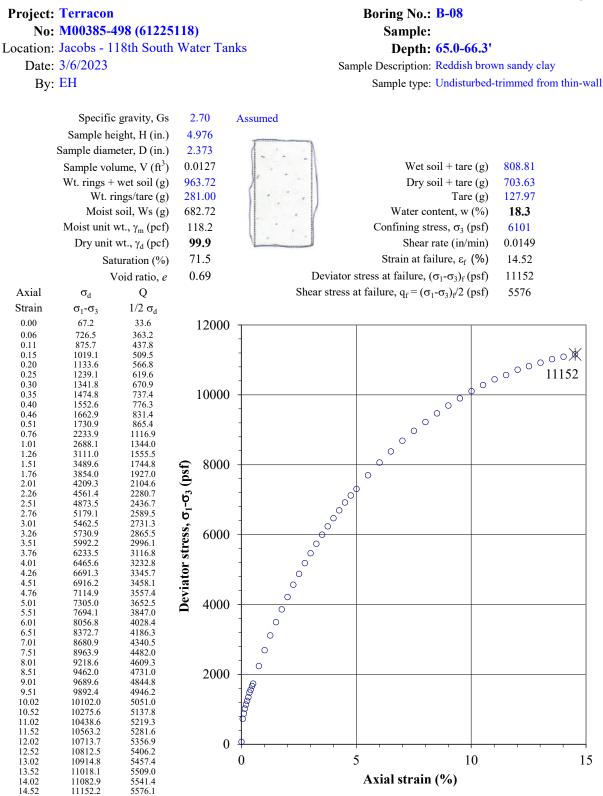

Entered by:_____ Reviewed:_____

(ASTM D	2030)							© IGES 2015	5, 2023
Project	: Terracon	1				Boring	No.: B-02		
	: M00385-		118		Sample:				
	: Jacobs - 1				lea		-	2.01	
		1001 South	vv a	ter Tan	IKS		pth: 40.0-4		
	: 3/6/2023					Sample Descri	-		
Ву	: EH					Sample	type: Undistur	bed-trimmed from Shelby	y tube
	Specifi	c gravity, Gs	2	.70	Assumed				
	Sample h	eight, H (in.)	5.	967					
	Sample dian	neter, D (in.)	2.	879	1				
	Sample vo	lume, V (ft ³)	0.0)225			Wet soil + tare	(g) 638.75	
	Wt. rings +	wet soil (g)	145	51.94			Dry soil + tare	(g) 549.61	
	Wt. i	rings/tare (g)	28	1.00			Tare	(g) 126.85	
	Moist	soil, Ws (g)	117	70.94		Wa	ter content, w	(%) 21.1	
	Moist unit	wt., γ_m (pcf)	11	14.8		Confin	ing stress, σ_3 (osf) 5115	
	Dry unit	wt., γ_d (pcf)	9	4.8		5	Shear rate (in/n	nin) 0.0179	
	Sa	aturation (%)	7	2.9		Strain	n at failure, $\epsilon_{\rm f}$	(%) 12.01	
		Void ratio, e	0	.78	Dev	ator stress at fai	lure, $(\sigma_1 - \sigma_3)_f$	psf) 8459	
Axial	$\sigma_{\rm d}$	Q				ress at failure, q			
Strain	$\sigma_1 - \sigma_3$	$1/2 \sigma_d$							
0.00	164.1	82.1		9000	1			8459 > o o o 承 o o o o o o	_
0.05	550.0	275.0			1			8459	
0.10 0.15	830.0 1123.0	415.0 561.5			-			, o o o 🗙 o o o o o	
0.20 0.25	629.6 826.7	314.8 413.3		8000			000		
0.30	946.7	473.4		0000]	,00 ⁰⁰ U			
0.35 0.40	1212.8 1520.4	606.4 760.2							
0.45	1805.0	902.5		7000					
0.50 0.75	2054.6 3215.1	1027.3 1607.5		/000					
1.00	4156.8	2078.4							
1.25 1.50	4896.0 5486.3	2448.0 2743.2	9	6000	1				
1.75	5943.8	2971.9	psd	0000	- 0				
2.00 2.25	6304.7 6590.2	3152.3 3295.1	3.						
2.50	6808.6	3404.3	P	5000					
2.76 3.01	7005.6 7164.9	3502.8 3582.5	iator stress, σ ₁ -σ ₃ (psf)	5000	- 0				
3.26 3.51	7285.9 7409.0	3642.9 3704.5	ess		1				
3.76	7514.4	3757.2	str	4000	0				
4.01 4.26	7601.3 7667.5	3800.6 3833.7	0L	-000	-				
4.51	7733.3	3866.7	iat		-				
4.76 5.01	7809.5 7867.1	3904.7 3933.6	Dev	3000	- 0				
5.51	7956.5	3978.2		5000	-				
6.01 6.51	8042.6 8115.3	4021.3 4057.7			-				
7.01	8193.7	4096.9		2000	10				
7.51 8.01	8232.1 8275.5	4116.0 4137.8		2000	- 0				
8.51 9.01	8311.3 8351.8	4155.7 4175.9			0				
9.51	8367.5	4183.8		1000	<u>6</u>				
10.01 10.51	8400.5 8414.0	4200.3 4207.0		1000	- Contraction of the second se				
11.01	8432.0	4216.0			₽°				
11.51 12.01	8437.3 8458.7	4218.7 4229.3		0	¢				
12.51	8456.1	4228.0		0	0	5	1	0	
13.01 13.51	8447.7 8454.3	4223.9 4227.1			0	5	1	U	15
14.02	8449.1	4224.6				Axial st	train (%)		
14.51	8436.8	4218.4							


Entered by:_____


Entered by:


Entered by:____

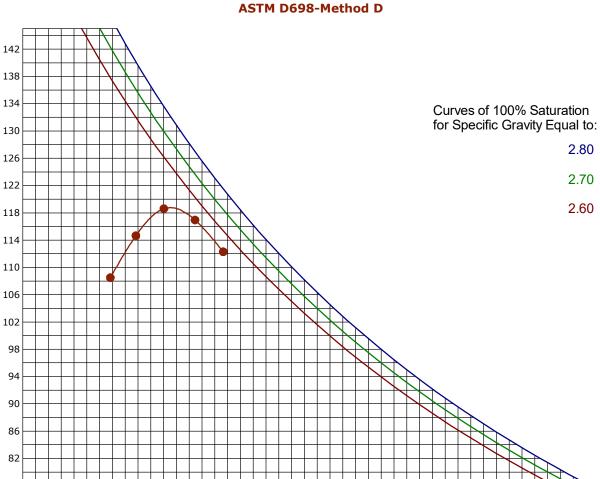

Entered by:____

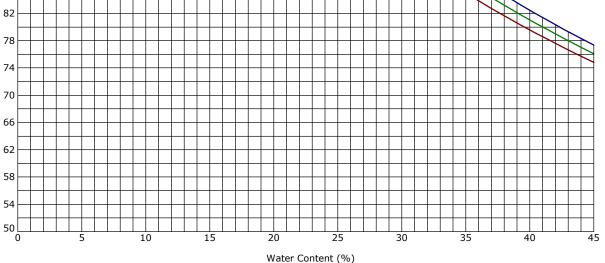
Entered by:____

Entered by:____

Jacobs - 118th South Water Tanks 11800 South and U-111 | Herriman, Utah Terracon Project No. 61225118

Dry Density (pcf)

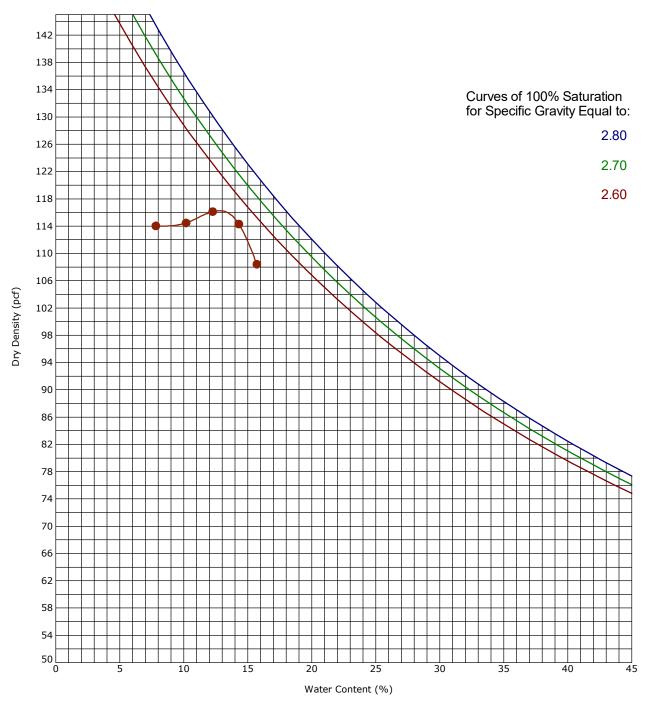



2.80

2.70

2.60

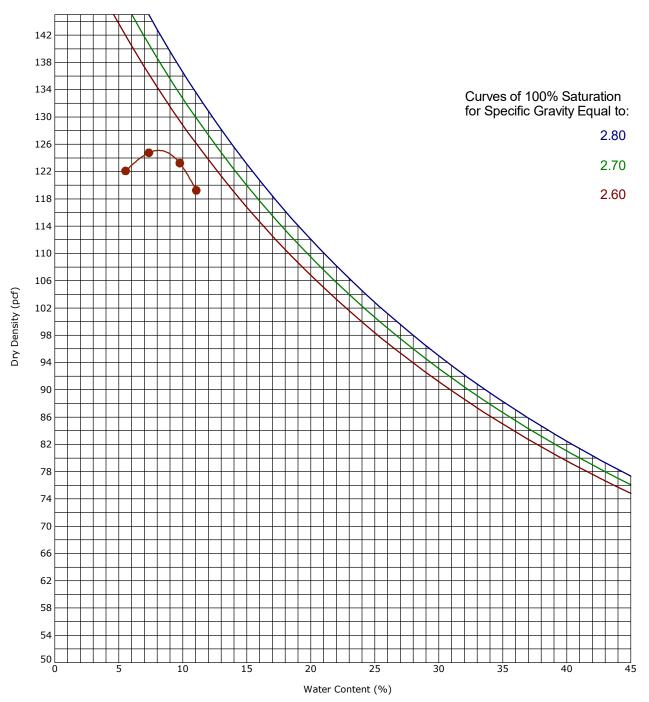
Moisture-Density Relationship


Во	oring ID	Depth	(Ft)	Description of Materials				
	B-01	0.5 - 1	L.5	LEAN CLAY with SAND(CL)				
Fines (%)	Fraction > mm size	ш	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)	
76	0.0	26	17	9	ASTM D698-Method D 118.8 11		11.5	

Jacobs - 118th South Water Tanks 11800 South and U-111 | Herriman, Utah Terracon Project No. 61225118

Moisture-Density Relationship

ASTM D698-Method D


Во	oring ID	Depth	(Ft)	Description of Materials					
	B-02	0.25 - 1.5		SILTY CLAY with SAND(CL-ML)					
Fines (%)	Fraction > mm size	ш	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)		
72	0.0	23	18	5	5 ASTM D698-Method D 116.3 12.8		12.8		

Jacobs - 118th South Water Tanks 11800 South and U-111 | Herriman, Utah Terracon Project No. 61225118

Moisture-Density Relationship

ASTM D698-Method D

Во	oring ID	Depth (Ft)		Description of Materials					
	B-04	0.25 -	1	SILTY, CLAYEY SAND with GRAVEL(SC-SM)					
Fines (%)	Fraction > mm size	ш	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)		
48	0.0	24	17	7	7 ASTM D698-Method D 125.1 8.1		8.1		

Client

Project

Jacobs Engineering Group Inc Holladay, UT Jacobs - 118th Water Tank 61225118

Date Received:

2/22/2023

Resul	Results from Corrosion Testing							
Sample Location	B-01	B-01	B-02	B-04				
Sample Depth (ft.)	0.5'-1.5'	15.0'-16.5'	0.3'-1.5'	0.3'-1.0'				
pH Analysis, ASTM G 51	8.07	8.96	7.22	8.84				
Water Soluble Sulfate (SO4), ASTM D516-07 (mg/kg)	47	1618	96	129				
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil	Nil	Nil				
Chlorides, APHA 4500-Cl ⁻ E, (mg/kg)	376	1180	320	219				
Red-Ox, ASTM G 200, (mV)	+476	+479	+494	+460				
Total Salts, AWWA 2520 B, (mg/kg)	621	3585	545	755				
Resistivity (Saturated), ASTM G 57, (ohm-cm)	3300	390	3100	4000				

Analyzed By:

ChrisAnne Ross Field Geologist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client

Project

Jacobs Engineering Group Inc Holladay, UT Jacobs - 118th Water Tank 61225118

Date Received: 2/22/2023

Resul	ts from Corro	sion Testing
Sample Location	B-06	B-08
Sample Depth (ft.)	15.0'-16.5'	25.0'-26.5'
pH Analysis, ASTM G 51	9.48	9.79
Water Soluble Sulfate (SO4), ASTM D516-07 (mg/kg)	622	332
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil
Chlorides, APHA 4500-Cl ⁻ E, (mg/kg)	333	292
Red-Ox, ASTM G 200, (mV)	+453	+442
Total Salts, AWWA 2520 B, (mg/kg)	1615	820
Resistivity (Saturated), ASTM G 57, (ohm-cm)	820	1300

Analyzed By:

ChrisAnne Ross Field Geologist

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Supporting Information

Contents:

General Notes Unified Soil Classification System Seismic Velocity Survey – South Jordan, UT - IGES

Note: All attachments are one page unless noted above.

Geotechnical Engineering Report

11800 South Zone C Reservoirs | South Jordan, Utah November 8, 2023 | Terracon Project No. 61225118

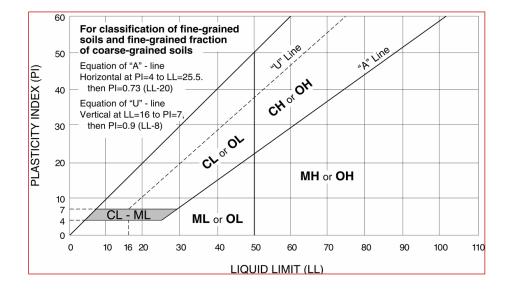
Soil Classification

Unified Soil Classification System

Criteria for Assigning Group Symbols and Group Names Using

	Laboratory Tests ^A							
	Gravels:	Clean Gravels:	Cu≥4 and 1≤Cc≤3 ^E	GW	Well-graded gravel F			
	More than 50% of	Less than 5% fines ^c	Cu<4 and/or [Cc<1 or Cc>3.0] E	GP	Poorly graded gravel F			
	coarse fraction retained on No. 4	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel ^{F, G, H}			
Coarse-Grained Soils:	sieve	More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F, G, H}			
More than 50% retained on No. 200 sieve		Clean Sands:	Cu≥6 and 1≤Cc≤3 ^E	SW	Well-graded sand ^I			
	Sands: 50% or more of	Less than 5% fines ^D	Cu<6 and/or [Cc<1 or Cc>3.0] E	SP	Poorly graded sand ^I			
	coarse fraction passes No. 4 sieve	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand ^{G, H, I}			
		More than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand ^{G, H, I}			
		Inorganic:	PI > 7 and plots above "A" line J	CL	Lean clay ^{K, L, M}			
	Silts and Clays: Liquid limit less than	Inorganic:	PI < 4 or plots below "A" line ³	ML	Silt ^{K, L, M}			
	50	Organic:	LL oven dried LL not dried < 0.75	OL	Organic clay K, L, M, N			
Fine-Grained Soils: 50% or more passes the		organic.	LL not dried < 0.75	UL	Organic silt ^{K, L, M, O}			
No. 200 sieve		Inorganic:	PI plots on or above "A" line	СН	Fat clay ^{K, L, M}			
	Silts and Clays: Liquid limit 50 or	Inorganici	PI plots below "A" line	MH	Elastic silt ^{K, L, M}			
	more	Organic:	LL oven dried	ОН	Organic clay K, L, M, P			
		Organic:	$\frac{LL \text{ oven arrea}}{LL \text{ not dried}} < 0.75$	UII	Organic silt ^{K, L, M, Q}			
Highly organic soils:	Primarily o	organic matter, dark in c	olor, and organic odor	PT	Peat			

A Based on the material passing the 3-inch (75-mm) sieve.


^B If field sample contained cobbles or boulders, or both, add "with

- cobbles or boulders, or both" to group name.
- c Gravels with 5 to 12% fines require dual symbols: GW-GM wellgraded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM wellgraded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{20}}$$

- F If soil contains \geq 15% sand, add "with sand" to group name. ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ³ If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains \ge 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N PI ≥ 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

General Notes

Sampling	Water Level	Field Tests	
Modified Dames & Moore Ring Sampler Shelby Tube Standard Penetration Test	✓ Water Initially Encountered ✓ Water Level After a Specified Period of Time ✓ Water Level After a Specified Period of Time ✓ Cave In Encountered ✓ Cave In Encountered ✓ Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations.	NStandard Penetration Test Resistance (Blows/Ft.)(HP)Hand Penetrometer(T)Torvane(DCP)Dynamic Cone PenetrometerUCUnconfined Compressive Strength(PID)Photo-Ionization Detector(OVA)Organic Vapor Analyzer	

Descriptive Soil Classification

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

Location And Elevation Notes

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	Strength Terms							
(More than 50% ret Density determined	f Coarse-Grained Soi ained on No. 200 siev by Standard Penetrati sistance	e.)	Consistency of Fine-Grained Soils (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance					
Relative Density	Standard Penetration or N-Value (Blows/Ft.)	Ring Sampler (Blows/Ft.)	Consistency	Unconfined Compressive Strength Qu (tsf)	Standard Penetration or N-Value (Blows/Ft.)	Ring Sampler (Blows/Ft.)		
Very Loose	0 - 3	0 - 6	Very Soft	less than 0.25	0 - 1	< 3		
Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4		
Medium Dense	10 - 29	19 - 58	Medium Stiff	0.50 to 1.00	4 - 8	5 - 9		
Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18		
Very Dense	> 50	> 99	Very Stiff	2.00 to 4.00	15 - 30	19 - 42		
			Hard	> 4.00	> 30	> 42		

Relevance of Exploration and Laboratory Test Results

Exploration/field results and/or laboratory test data contained within this document are intended for application to the project as described in this document. Use of such exploration/field results and/or laboratory test data should not be used independently of this document.

Intermountain GeoEnvironmental Services, Inc. 2702 South 1030 West, Suite 10, South Salt Lake, Utah 84119 (801) 270-9400

20 January 2023

Josh White Terracon 6949 S High Tech Drive, Suite 100 Midvale, Utah 84047

RE: SEISMIC VELOCITY SURVEY (Vs100) - SOUTH JORDAN, UT

Based on the project objective and site conditions, IGES conducted a series of shear wave velocity surveys near U-111 and 11800 South, South Jordan, UT (Figure 1). The objective of the surveys is to determine the shear wave velocity profile of the near surface V_{S100} for the purpose of determining the seismic site class and ground motion studies.

Seismic Shear Wave Velocity Survey

Seismic Surface Waves methods such as MASW (Multichannel Analysis of Surface Waves), MAM (Microtremor Array Measurements), and ReMi (Refraction Microtremor) use the dispersive characteristics of surface waves to determine the variation of the seismic shear wave velocity with depth. Velocity data are derived by analyzing seismic surface waves generated by a controlled impulse or by random ambient sources and received by an array of geophones. Parameters of the survey are in Table 1.

MAM (Microtremor Array Measurements)

Figure A1 shows the dispersion curve of the data from Test 1 with phase velocity (ft/s) of the surface wave as a function of frequency (Hz). Figure A2 shows the shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 1 modeled from the Test 1 dispersion curve. The shear velocity of the near surface of Test 1 is calculated to be 938.5 ft/s. Figure A3 shows the dispersion curve of Test 2, and Figure A4 shows the shear wave velocity profile of Test 2. The shear velocity of the near surface of Test 2 is calculated to be 915.2 ft/s.

The ambient MAM data was supplemented with 10 minutes of hammer blows to produce a smooth broad-spectrum curve. Soundings are in Appendix A.

MASW (Multichannel Analysis of Surface Waves)

MASW data was derived by analyzing seismic surface waves generated by a controlled impulse using a 12 lb. hammer. Soundings are in Appendix B.

Figure B1 shows the dispersion curve of the MASW data from Test 1 with phase velocity (ft/s) of the surface wave as a function of frequency (Hz). Figure B2 shows the MASW shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 1 modeled from the Test 1 dispersion curve. The shear velocity of the near surface of Test 1 is calculated to be 978.2 ft/s. Figure B3 shows the dispersion curve of the MASW data of Test 2, and Figure B4 shows the MASW shear wave velocity profile of Test 2. The shear velocity of the near surface of Test 2 is calculated to be 960.7 ft/s.

ÍGES

Terracon 20 January 2023 Page 2 of 14

Table 1: Test	t recording	parameters
---------------	-------------	------------

Test location	South Jordan, UT
Test date	01/03/2023
Recording instrument	Summit Extreme Pro
S/N	SUX1018
Geophone natural period	4.5 Hz.
Geophone/station spacing	16.4 feet
Number of channels	24
Spread length / geometry	377 feet
Sample rate	4 milliseconds
Number of samples	15,000/trace
Record length	60 seconds
Total recording time / records	30 minutes
Low pass filter	½ Nyquist
Low cut filter	1 Hz.
Seismic source	12 lb. hammer (10 minutes)
Source location	-30 foot offset
Analysis software	SurfSeis [™] Geometrics, Inc.

Figure 1: Area map of two shear wave velocity (V_{S100}) surveys near U-111 and 11800 South, South Jordan, UT.

Terracon 20 January 2023 Page 3 of 14

Limitations

The concept of risk is a significant consideration of geophysical analyses. The analytical means and methods used in performing geophysical analyses and development of resulting data set does not constitute an exact science. Analytical tools used by geophysicists are based on limited data, empirical correlations, judgment, and experience. As such the solutions and resulting data set presented in this report cannot be considered risk-free and constitute IGES's best professional opinion based on the available data at the time they were developed. IGES has developed the preceding analyses, at a minimum, in accordance with generally accepted professional geophysical practices and care being exercised in the project area at the time our services were performed. No warrantees, guarantees or other representations are made.

The information contained in this report is based on limited field testing and understanding of the project. The data used in the preparation of this report were obtained by IGES for this project. It is very likely that variations in the soil, rock, and groundwater conditions exist between and beyond the points explored. The nature and extent of the variations may not be evident until construction occurs and/or additional explorations are completed.

This report was prepared for our client's exclusive use on the project identified in the foregoing. Use of the data contained herein for any other project described in this report is at the user's sole risk. It is the client's responsibility to see that all parties to the project including the designer, contractor, subcontractors, etc. are made aware of this report in its entirety. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk.

.000.

Terracon 20 January 2023 Page 4 of 14

We trust you will find this report acceptable and look forward to discussing the project with you in more detail if necessary. If you have any questions regarding the work or any other aspects of our report, please contact the undersigned at your earliest convenience at (801) 270-9400.

Sincerely, IGES, Inc.

Jacob Pratt Geophysicist

Newalh

Megan Valdez Geophysical Engineer

Attachments: Appendix A Appendix B

T:\Projects\00385_Terracon\008_SJ_Vs100\R00385-008F.docx Copyright © IGES, Inc. 2023

Terracon 20 January 2023 Page 5 of 14

APPENDIX A

Shear Wave Velocity Soundings

Microtremor Array Measurement (MAM)

(Depth is measured in feet below ground surface. Velocity is reported in feet per second.)

Terracon 20 January 2023 Page 6 of 14

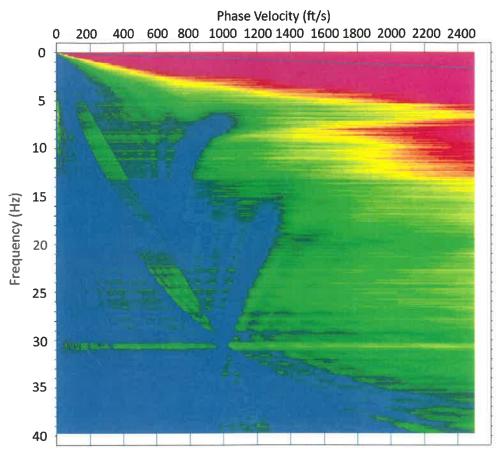


Figure A1: Dispersion curve of Test 1 showing phase velocity (ft/s) as a function of frequency (Hz)

Terracon 20 January 2023 Page 7 of 14

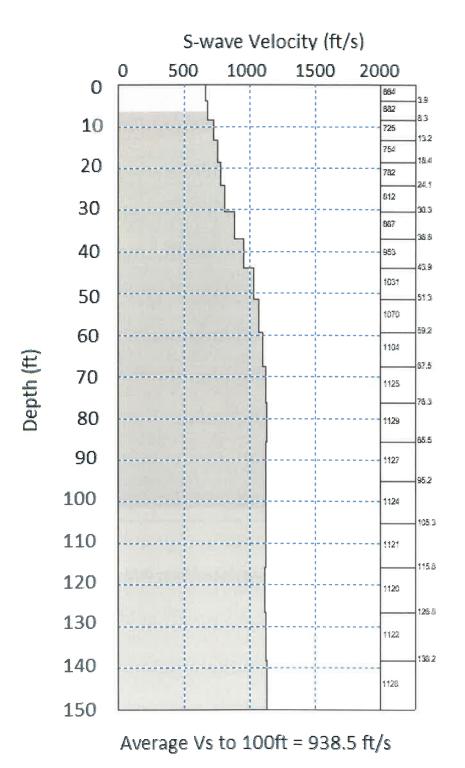


Figure A2: Shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 1 modeled from the Test 1 dispersion curve. The shear velocity of the near surface is calculated to be 938.5 ft/s.

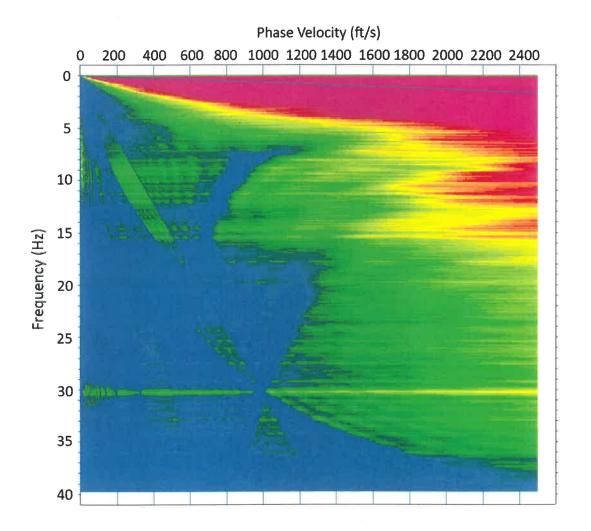


Figure A3: Dispersion curve of Test 2 showing phase velocity (ft/s) as a function of frequency (Hz).

Terracon 20 January 2023 Page 9 of 14

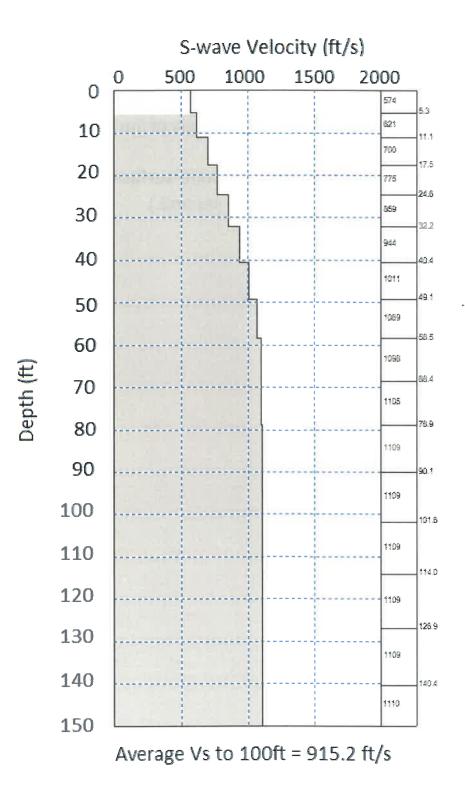


Figure A4: Shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 2 modeled from the Test 2 dispersion curve. The shear velocity of the near surface is calculated to be 915.2 ft/s.

Terracon 20 January 2023 Page 10 of 14

APPENDIX B

Shear Wave Velocity Soundings

MASW (Multichannel Analysis of Surface Waves)

(Depth is measured in feet below ground surface. Velocity is reported in feet per second.)

Terracon 20 January 2023 Page 11 of 14

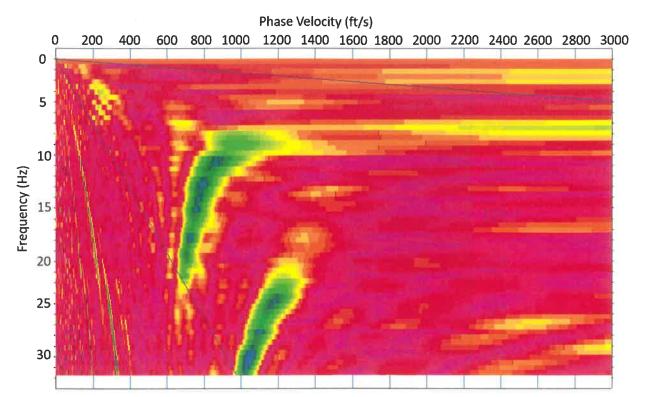


Figure B1: Dispersion curve of Test 1 MASW data showing phase velocity (ft/s) as a function of frequency (Hz).

Terracon 20 January 2023 Page 12 of 14

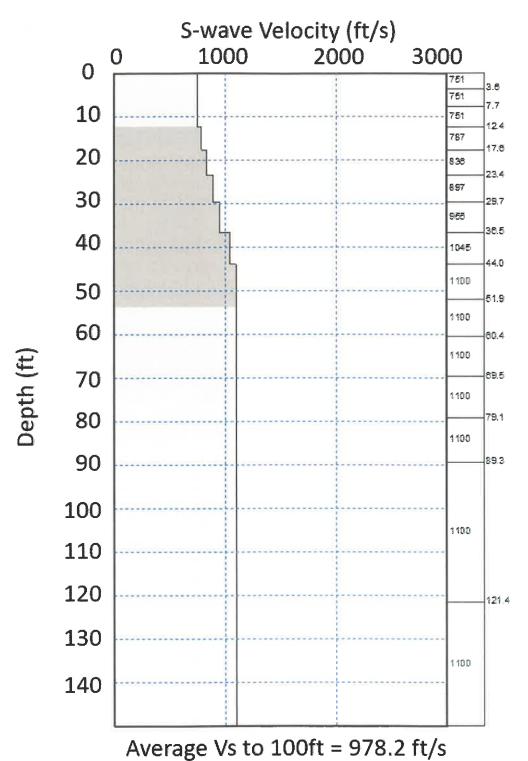


Figure B2: Shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 1 MASW data modeled from the Test 1 MASW dispersion curve. The shear velocity of the near surface is calculated to be 978.2 ft/s.

Terracon 20 January 2023 Page 13 of 14

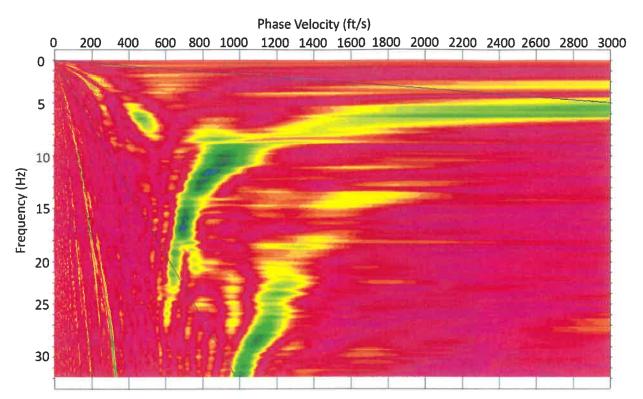


Figure B3: Dispersion curve of Test 2 MASW data showing phase velocity (ft/s) as a function of frequency (Hz).

Terracon 20 January 2023 Page 14 of 14

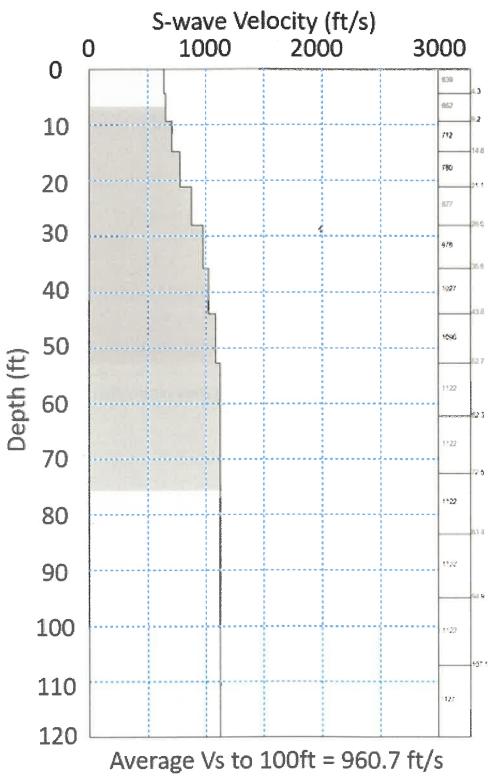


Figure B4: Shear wave velocity profile (a 1-D sounding of velocity as a function of depth) of Test 2 MASW data modeled from the Test 2 MASW dispersion curve. The shear velocity of the near surface is calculated to be 960.7 ft/s.